Developer’s Guide

‘ 1\/Iicrosoﬁ@|
-

Relational Database Management System for MS-DOSe

Information in this document is subject to change without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft
Corporation.

©1989-1993 Microsoft Corporation. All rights reserved. Printed in the United States of
erica.

The Fox Head logo, FoxBASE+, FoxPro, Microsoft, MS, MS-DOS, and Multiplan are
registered trademarks and Rushmore is a trademark of Microsoft Corporation in the
United States of America and other countries.

Paradox is a registered trademark of Ansa Software, a Borland Company.
Macintosh is a registered trademark of Apple Computer, Inc.

dBASE III PLUS and dBASE IV are registered trademarks, and Framework II is a
trademark of Ashton-Tate Corporation.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.

HP is a registered trademark of Hewlett-Packard Company.

Intel is a registered trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Lotus, Symphony, and 1-2-3 are registered trademarks of Lotus Development
Corporation.

Novell is a registered trademark of Novell, Inc.

Epson is a registered trademark of Seiko Epson Corporation, Inc.

Document No. 37545-1292
Printed in Ireland 10

Contents

Contents

Overview: Putting It All Together

This chapter provides an overview of the power tools
used to develop an application. The chapter begins on
page 1-1.

Screens

Advantages of the Screen Builder 2-2
Terms Used in this Chapter 2-3
Utility Screens 2-4
OtherScreens 2-5
ScreenSetso 2-6
Code Smippets 2-7
Calling a Screen Program 2-10
Significance of READ 2-11
Your Working Environment 2-14
Design Considerations 2-15
The Generated Program 2-18
Sereen Layout 2-26
SetupCode 2-27
Cleanup and Procedure Code 2-37
Window Definitions 2-43
READ Level Clauses 2-44
Field Objects and Controls 2-54
Field Objects 2-55
PushButtons 2-65
RadioButtons 2-71
CheckBoxes 2-75
Popups oo 2-78
Lists 2-84
Coordinating Browse with Screens 2-89
Activating Browse Windows 2-90
Sizing and Positioning Browse Windows . . . 2-91
Activating Menus During a Modal READ . . . 2-92
Debugging Screen Code in an Application 2-93
Using FoxDoc with Screen Programs 2-95

ii

Menus

Advantages of the Menu Builder 3-2
Terms Used in this Chapter 3-3
Code Smippets, 3-5
Calling a Menu Program 3-7
Activatingthe Menu 3-8

READandMenus 3-8

SETSYSMENU 3-9

PUSH MENU and POPMENU 3-10
Your Working Environment 3-11
Design Considerations 3-12
The Generated Program 3-16
General Options... 3-20
Menu Bar Options... 3-28
Menu Popup Options... 3-31
Option Check Box 3-36
Debugging your Menus 3-40
Additional Tips 3-42

Coordinating Screens and Menus

Managing a Menu System 4-2
Accessing Menus Duringa READ 4-2
Controlling Menus with SET SYSMENU 4-3
Saving and Restoring Menus 4-3
Calling Screen and Menu Programs 4-4

Accessing Screen Controls viaa Menu 4-6

Project — The Main Organizing Tool

Advantages ofa Project 5-2
What Can Projects Contain? 5-3
One Project Versus Multiple Projects 5-4
Home Directory for Portable Applications 5-5
SelectingaMainFile 5-7
Including Modifiable Files in Applications 5-8
Unknown References in Projects 5-9

Contents

Contents

Procedural Code in Projects
Error Handling
Saving the Current Environment
Creating the New Environment
Preserving/Restoring the System Menu Bar
Testing For Resources
Utility Procedures

Debugging Your Application

Program Errors e e e e e e e e e
Compilation Errors

- Interactive Compilation
COMPILE Command
Saveand Compile

Causes of Compilation Errors
Runtime Errors
Debugging Suggestions

Using SQL SELECT

Query Databases Uou Lo
Problems e
Solutions L 0o

Report Variable Hints
Report Variable Do’s and Dont’s

iii

iv

Arrays

CreatingArrays 9-2
FoxPro Array Functions 9-4
Manipulating Arrays 9-5
Initializing Entire Arrays 9-5
Referencing Array Elements 9-5
Assigning Values to Array Elements 9-6
Redimensioning Arrays 9-7
Public and Private Arrays 9-8
PublicArrays 9-8
Private Arrays 9-8
Array Limitations 9-9

Passing Entire Arrays to User-Defined Functions . 9-10
Transferring Data Between Arrays and Databases 9-11
Arrays and SQLSELECT 9-13
Arrays and FoxProControls 9-14

Low-Level File Input/Output

CreatingFiles 10-3
Opening Filesand Ports 10-5
Reading From Files and Ports 10-6
Writing to Filesand Ports 10-8
Closing Filesand Ports 10-8
Commands and Functions for Low-Level I/O 10-9
Low-Level Access to Communications Ports . . . 10-10
Text Merge
Merging Text with Text Merge Components 11-2
NN 11-5
Directing Output to the Screen, Windows and Files 11-8
Screen Output 11-8
Window Output 11-8
File Qutput 11-9
Program Templates and Programs 11-10
Contents

Contents

Customizing Help
Getting Context-Sensitive Help
Understanding FOXHELP
Help Database Requirements
FOXHELP Topics
FOXHELP Details
FOXHELP Cross References
Tailoring the Help Display
Specifying a Help Database
Narrowing Displayed Help Topics
Grander Schemes
HelpFileCodes

Documenting Applications with FoxDoc
OVEIVIEW . . v v v e v e e e et e e e e e e e e
Getting Started oL

FoxDocFiles.
Moving Around In FoxDoc
Function Key Options I
A Quick Run Through
Status Screen oo
FoxDoc System Screen
FoxDoc Report Screen
FoxDoc Format/Action Diagram Options Screen
FoxDoc Xref (Cross-Reference) Options Screen . .
FoxDoc Headings Options Screen
FoxDoc Tree Diagram Screen
FoxDoc Printing Options Screen
FoxDoc Other Options Screen.
FoxDoc Commands
MacCros . . . v v v v e e e e e e e e e e e e
DOCCODE: Pseudo Program Statements
Other FoxDoc Directives
Using FoxDoc in a Batch Environment

Program Limitations and Miscellaneous Notes . . 13-46

Memory Usage 13-46

Continuation Lines 13-46

Multiple Procedure Files 13-47

Command Line Switches 13-47
Changing, Saving and Restoring Default Options 13-49
Default File Names for Report Output 13-50
FoxDoc File Types Identification 13-51
Cross-Reference Codes 13-55
Batch Programs 13-57
Keyword File List Information. 13-59
Indentation, 13-61
Symbols, . 13-62
Sample Reports 13-64
Sample Main Program/Project File 13-65
System Summary 13-66
Tree Diagram 13-68
Procedure and Function Summary 13-69
Database Structure Summary 13-70
Database Summary 13-72
Index File Summary 13-74
Report Form File Summary 13-76
Token Cross-Reference Report 13-78
Public Variable Summary 13-79
Macro Summary 13-80
Array Summary, 13-81
FileList 13-82

Optimizing Your Application

The Rushmore Technology 14-2
Rushmore with Multiple Databases 14-4
Rushmore with Single Databases 14-4
Basic Optimizable Expressions 14-5
Combining Basic Optimizable Expressions . . 14-6
Combining Complex Expressions 14-7
When Rushmore Is Not Available 14-9
Disabling Rushmore 14-9

General Performance Hints 14-10

Contents

Contents

Compatibility

FoxBASE+ Compatibility 15-2
Emulating FoxBASE+ Keystroke Assignments 15-2
SET Options for FoxBASE+ Emulation 15-3
Unavoidable Differences 15-4

SETCOMPATIBLE 15-7

Converting Files from FoxBASE+ 2.10. 15-8
NDXIndex Files. 15-9
DBT Memo Files 15-9
FOX Program Files 15-10
Compiling Programs 15-10
Executing Programs 15-11

Converting Files from FoxPro 1L.XX 15-13

FoxPro in a Multi-User Environment

System Configuration 16-2
Temporary Work Files 16-2
CONFIGFP 16-3
FOXUSER Resource File 16-4

Programming in a Multi-User Environment 16-6
Exclusive Use versus Shared Use 16-6
Commands that Require Exclusive Use 16-7
Write Access versus Read-only Access. 16-8
Record and File Locking 16-8
Automatic versus Manual Locking 16-9
Unlocking Records and Database Files 16-9
Commands that perform Automatic Locking . 16-10
SETREPROCESS 16-12
Manual Locking Functions 16-13
Collision Management 16-14
Error Handling Routines 16-14
The Low-Level File Functions 16-16

Optimizing Performance 16-17
Place the Temporary Files on a Local Drive . 16-17
Sorted Files versus Indexed Files 16-17
Exclusive Use of Files 16-17
Lengthof Lock 16-18

Multi-User Commands and Functions 16-19

vii

viii

Printer Drivers
Printer Driver Overview
Using FoxPro’s Sample Printer Drivers
Specifying a Printer Driver
Creating a New Printer Driver Setup
Modifying an Existing Printer Setup
Deleting a Printer Setup
Specifying a Default Printer Setup
Loading a Printer Driver Setup
Clearing the Current Printer Setup
Specifying Printer Procedures Interactively .
Creating Custom Printer Drivers
Printer Driver Programs
Printer Driver Procedures
PDONLOAD ¢ veon
PDONUNLOAD
PDDOCST v i v vt v it e i e e e
PDDOCENDo oo.o...
PDPAGEST
PDPAGEEND
PDLINEST

PDOBJST ¢ v v v v v v
PDOBJECT i v v v v v v i e e
PDOBJEND. v v v v v v v e v
PDADVPRTo v v v v v v
Printer Procedures Notes
PDPARMS it e e e e e
Designating a Printer Driver Program
Custom Printer Driver Setup Applications

Appendix

Error Messages

Index

17-12

Contents

Putting It All Together

1 Overview of Putting It All Together
-

Chapters in Putting It All Together illustrate how to use FoxPro®
power tools to develop an application. FoxPro power tools auto-
mate the construction of user interfaces, the retrieval and display
of information, the gathering of application components from vari-
ous locations into an .APP or .EXE file, and the updating of applica-
tions when components change.

A project is the unifying mechanism that gathers the pieces of an
application together, as shown in the following figure.

Project Components
Procedures:
» Programs
Interface: External Routines:
« Screen sets . « Libraries
« Menus Project
» Formats
Retrieval/Reporting: Other Files:
* Reports » Databases
« Labels * Mem files
 Queries » Keyboard macros

Each chapter in Putting It All Together includes examples, expla-
nations and recommended techniques to help you get the most out
of FoxPro.

Overview of Putting It All Together D1-1

To get the most out of this section, you should know how to oper-
ate the power tools and have a basic understanding of the FoxPro
language. If you need to learn about the power tools, refer to the
FoxPro User’s Guide or the FoxPro Getting Started manual. If you
are interested in the details about a particular command or func-
tion, refer to the FoxPro Language Reference.

Chapters in Putting It All Together contain examples from the
ORGANIZER sample application provided with FoxPro version 2.5.
This application is in the SAMPLE subdirectory. Feel free to inves-
tigate the ORGANIZER in depth.

To use the ORGANIZER, execute ORGANIZE.APP. This application
adds two options to the System menu: Organize... and Conver-
sions. The Conversions option allows you to convert from one unit
of measurement to another. When you choose the Organize... op-
tion, a submenu appears, displaying the following options:

* Restaurants organizes information about restaurants.

* Client Manager organizes information about clients.

* Money Manager... displays a submenu with the following
options:
— Credit Cards organizes credit card information.
— Accounts organizes bank account information.

— Transactions organizes business transaction
information.

* Family & Friends organizes information about family
members and friends.

The ORGANIZER code used in the examples might differ
slightly from the ORGANIZER code on your disk.

The ORGANIZER application consists of eight projects: ACCNTS.PJX,
TRANS.PJX, CLIENTS.PJX, FAMILY.PJX, CREDIT.PJX, CONVERT.PJX,
RESTAURS.PJX and ORGANIZE.PJX.

D1-2 Overview of Putting It All Together

2 Screens
1

When you build a screen, you are creating a piece of source code
for your application. Information about the screen is saved in an
.SCX database. This database has an associated memo field with
an .SCT extension. This screen file contains:

® Information to define windows (if the screen is defined as a
window)

¢ Information to define the size, position, and appearance of all
fields and controls

® Information about the environment (f it is saved with the
screen)

® All underlying code (defined in code snippets) to define the
behavior of the screen and the objects within the screen

GENSCRN, the FoxPro screen generator, extracts information from
the .SCX database and creates a screen program file with an .SPR

extension.
An .SPR screen program file should never be edited. When
you need to make changes to a screen, they should be made
to the screen itself (using the FoxPro Screen Builder).

This chapter assumes knowledge of the Screen Builder and how to
create objects and define code snippets. It also assumes knowledge
of FoxPro commands and functions.

Examples throughout this chapter demonstrate how to use the
clauses associated with each READ and object level clause to define
the behavior of a screen and the objects within the screen. All
examples are taken from the ORGANIZER application provided with
FoxPro. For more information about the ORGANIZER, see the chap-
ter titled Putting It All Together in this manual.

We recommend that you open the screen (.SCX) files used in the
examples to look at the code in the code snippets for different ob-
jects in the screen. Compare the code snippets to see how the ob-
jects interact with each other and with other screens in a screen
set. You should also run the ORGANIZER application to see how
objects and screens behave in an application.

Screens D2-1

Advantages of the Screen Builder

Advantages of the Screen Builder

D2-2

Save Lots of Time

Taking a minimal amount of time learning to use the Screen
Builder now will result in a big payoff immediately. The code gen-
erator creates all the code to define the physical placement of
fields and controls. It also assigns names to procedures, eliminat-
ing the possibility of a name collision in an application.

Organization and Clarity

The Screen Builder provides you with a method to encapsulate in-
terface code and separate it from procedural code.

You can unify an object and the procedures that define its action.
Procedures are defined in code snippets that are stored with the
object.

WYSIWYG

What-you-see-is-what-you-get! There’s no more counting rows and
columns to define the position of a field. Imagine trying to count
pixels in a graphic environment.

When you design a screen with the Screen Builder, you can see
how the screen will look and how different objects interact with
each other in the generated screen. You can experiment with dif-
ferent layouts, too.

Increased Productivity

You can design “utility” screens that can be combined with other
screens in a screen set. One utility screen can be used over and
over in an application without code duplication. Also, if you make
a change to the utility screen, the change is reflected in every ap-
plication that uses the screen.

We have supplied several utility screens that you can use as appli-
cation building blocks. You can also assemble your own library of
reusable screens to reflect your own interface style.

Screens

Terms Used in this Chapter

Terms Used in this Chapter

Screens

The following is a list of terms used throughout this chapter:

Code snippet — A piece of code associated with an object or
screen. A code snippet is stored with the screen.

Control — Push buttons, radio buttons, check boxes, popups, lists
and invisible buttons are controls that can be defined in a screen.

Generated code — Code created by GENSCRN, the FoxPro screen
generator.

Generator-named procedures — Procedures assigned a unique
name by the screen generator. Allowing the generator to name
procedures prevents name collision in an application.

Object — Any text, field, box, line or control in a screen.

Object level clause — A clause for a specific object in a screen.
A code snippet can be defined for each clause. WHEN, VALID and
MESSAGE clauses are available for all objects. An ERROR clause is
available for GET and EDIT fields.

READ level clause — A clause for a specific screen. A code snip-
pet can be defined for each clause. ACTIVATE, VALID, DEACTIVATE,
SHOW and WHEN clauses are available for screens.

Screen set — A screen set can be just one or a combination of
several screens. One .SPR program is generated for a screen set.

.SCX file — A screen database file.

.SCT file — Memo file associated with .SCX database.
.SPR file — Generated screen program file.

.SPX file — Compiled .SPR file.

User-named procedures — Procedures that the user names and
calls by name in a code snippet or expression. The alternative to a
user-named procedure is a generator-named procedure.

Utility screen — A screen designed to work with other screens
when combined in a screen set. Utility screens provide consistency
in applications. Changes made to a utility screen are reflected in
all modules of an application in which the utility screen is used.

D2-3

Utility Screens

Utility Screens

Utility screens are screens designed to be used multiple times
throughout an application or in more than one application. They
are often combined with other screens in a screen set. Utility
screens are usually designed to be independent of the structure
and content of a particular database.

Utility screens can be used in a variety of ways. The ORGANIZER
application uses utility screens to move through data files (CON-
TROL1.SCX) and to locate specific records in data files
(BROWSER.SCX).

< Next > < Prior > < Top > < Bottom > <« Locate > « OK »

CONTROL1.SCX

When you use utility screens:
®* You can share the same screen among different applications.

® You provide consistency throughout an application. When a
utility screen is used in several places, the user becomes
familiar with its look and functionality.

® Any changes you make to a utility screen are reflected
throughout the application. When you modify a utility screen,
the Project Manager makes sure that the latest version of the
screen is used in every application. All you need to do is
rebuild projects that contain the modified utility screen.

Naming Variables in Utility Screens

When you name variables in utility screens, include the “m.” prefix
to avoid a variable name conflict with a field name from a
database file.

D2-4 Screens

Utility Screens

REGIONAL Variables in Utility Screens

Because utility screens are often combined with other screens in a
screen set, it is best to define variables as REGIONAL when
designing utility screens. The REGIONAL command lets you create
regional memory variables and memory variable arrays. Memory
variables or arrays with identical names can be created without
interfering with each other — their values are protected within a
“region”.

Using REGIONAL variables is described later in this chapter and in
the FoxPro Language Reference.

Other Screens

Many screens are designed to be used with a specific database or
application. The “non-utility” screens:

® Are used only once

® Typically reference information that is unique to the current
application

Screens D2-5

Screen Sets

Screen Sets

A screen set can consist of one screen or it may consist of many
screens. When code is generated, one .SPR program is created for
the entire screen set.

Modularity of Interface Pieces

Usually, screens combined in a screen set are defined as windows.
It may help to think of “one screen — one window.” For example,
the control panel is a separate screen because it occupies its own
window. Don’t think of a screen as “everything on the monitor.”
Think of a screen as an entity occupying one window.

Creating a Screen Set

D2-6

You can create a screen set with the Project Manager. When you
add a screen to a project, the Generate Screen dialog appears.

Choose the Add push button to add the desired screens to the
screen set. At the bottom of the Generate Screen dialog you can
name the screen set. The name of the first screen in the screen set
is displayed in the text box by default.

The order in which screens are placed in a screen set affects the
access order of the screens upon execution. It also affects the gen-
eration of READ level code snippets in the .SPR program.

Options in the Generate Screen dialog allow you to edit, remove
and arrange the screens. You can also suppress the generation of
certain code segments. For information on ordering screens in a
screen set and other options in the Generate Screen dialog, see the
Screen Builder chapter in the FoxPro User’s Guide.

You can save the coordinates specified when arranging
screens by placing the screens in a project and saving the
project. All information specified in the Generate Screen di-
alog is saved in the project file.

When you define and generate screen sets containing
multiple screens, setup code from successive screens is
concatenated with the setup code from the first screen. It is
possible to write code for one screen that will
unintentionally change the desired output of code written for
a previous screen. Careful planning and coding will ensure
that you obtain the results you intended.

Screens

Code Snippets

Code Snippets

Screens

When you create a screen, you can define code snippets associated
with a specific clause for a specific object in a screen. You can also
define code snippets that affect the entire screen. Defining code
snippets is described in the Screen Builder chapter of the FoxPro
User’s Guide.

When you assign a clause to an object or a screen, you can define
an expression or a procedure for the clause.

Error:
C) Procedure < Edit... >
(+) Expression
<« OK »
"'Blank entries are not alloued"
< Cancel >

Defining an Expression

Examples in this section are from the USERLAST field in
ADDUSERS.SCX.

If an expression is defined for a clause, the expression is inserted
in the generated program with the associated clause.

@ 8,41 GET m.userlast ;

ERROR “Blank entries are not allowed” ;
DISABLE

If the expression calls another procedure, you can define that pro-
cedure in the Cleanup & Procedure code or it can be any procedure
located in your path. Cleanup & Procedure code is described later
in this chapter.

D2-7

Code Snippets

If a procedure is defined for a clause, the procedure is assigned a
unique name by the SYS(2015) function.

Valid:
(<> Procedure < Edit... >
C) Expression
<« oK »
IF EMPTY(m.userlast)
< Cancel >

SHOW GET m.userfirst ENABLE
CUROBJ = OBJNUM(mM.userfirst)

Defining a Procedure

This unique name is inserted in the generated program with the
clause:

@ 8,41 GET m.userlast ;

VALID _px20nOuaf ()

The procedure is generated at the end of the program file. The
unique name associated with the clause becomes part of a
FUNCTION command and the code snippet follows.

**_
* _PX20NOUAF m.userlast VALID *
* *
* Function Origin: *
* *
* Fram Screen: ADDUSERS, Record Number : 8 * - Fu.m.:tlon
. origin comments
* Variable: m.userlast *
* Called By: VALID Clause *
* Oobject Type: Field *
* Snippet Number: 6 *
Khkkhkhkhkhkkhkhkhkhkhkhkhkdkhkhkhrhkhhkxkk * *kkkkk * Kk kk
. —
FUNCTION _px20nOuaf &5 m.userlast VALID
#REGION 1
IF EMPTY (m.userlast)
RETURN .F.
ENDIF

D2-8 Screens

Screens

Code Snippets

SHOW GET m.userfirst ENABLE
_CUROBJ = OBINUM (m.userfirst)

It is not necessary to include a RETURN command in the code snip-
pet. If no RETURN statement is included, a .T. is automatically re-
turned.

The unique name assigned to a code snippet changes every
time you generate a screen. When you want to change a
screen, you must modify the screen (the .SCX file) and then
regenerate the code. If you make modifications in the
generated program (the .SPR file) and then regenerate the
screen, all changes will be lost.

In the generated code, all procedures are documented with the
unique name and function origin comments. These comments de-
scribe the screen, object and clause with which the procedure is
associated. Comments are also inserted in the generated program
so that FoxDoc can document your programs.

D2-9

Calling a Screen Program

Calling a Screen Program

D2-10

When you call a screen program, you must use the following syn-
tax:

DO <filename>.SPR
Screen programs (.SPR), menu programs (MPR), programs (.PRG),
queries (.QPR), projects (PJX) and applications (APP) are all as-

signed different extensions. This allows these files to have the
same base names, yet not overwrite programs on disk.

Compiled screen programs have an .SPX extension. Be sure to use
the .SPR or .SPX extension when calling a screen program.

Screens

Significance of READ

Significance of READ

READ is the operative command used to animate and coordinate
sets of screens, menus and other windows into an interactive ses-
sion. Other statements in a screen program define the appearance
and behavior of objects in the screen. The READ command makes
the objects come alive.

READ level clauses and the actions they perform are:

Activate

Deactivate

Show

Valid

When

Modal

Screens

This routine is used to disable objects in other win-
dows, hide windows, display messages, etc.

This routine is used to keep the current READ window
active (not allow another window to become the out-
put window). It can also be used to terminate (or not
terminate) a READ based on the RETURN value.

This routine is used to refresh SAY and GET fields,
enable and disable GET objects.

This routine is used to determine if a READ can be
exited based on the result of a logical expression.

This routine is used to determine if the READ is exe-
cuted based on the result of a logical expression. The
WHEN clause can also be used to set the environment
for a READ. For example, if you want a menu avail-
able in a modal read, you would execute the menu
program in the READ WHEN clause.

When a window is defined as modal, the window as-
sumes the behavior of a FoxPro dialog. This means
that windows outside of the screen set cannot be
brought forward on top of the screen set window and
the current menu system is temporarily deactivated.

D2-11

Significance of READ

D2-12

With You can include a list of windows that can be acti-
vated along with a screen set if an Associated Window
list is included in the Generate dialog. This window
list is added to the READ command. The syntax for
the WITH clause is:

READ WITH <window title>

The ACTIVATE clause can define the behavior of
screens in the Associated Window list. It is executed
only when the activating window is a READ window.
It is not executed when Browse windows, desk acces-
sories or other non-READ windows are included with
the screen set.

The WITH clause automatically makes the screen set
modal. Only those windows defined in the screen set
and specified in the Associated Window list can be ac-
tivated.

To define a screen as Modal or assign an Associated Window list:

1. Choose the Generate option on the Program menu popup when
the screen is frontmost or choose the Edit push button when
building a project. The Generate Screen dialog appears.

Defining an Associated Window list automatically makes the
screen set modal.

2. Choose the Modal or Associated Windows check box. Modal
defines the screen as modal (as described above).

When you choose the Associated Windows check box, the Asso-
ciated Window dialog appears. This dialog allows you to specify
the Associated Window that can be activated with the screen
set.

Screens

Screens

Significance of READ

This is a restrictive list. Only those windows specified in the
list can be activated. If other windows are present when the
screen is executed, they will appear on the monitor but cannot
be activated or accessed.

. Specify the windows you want to include with the screen in the

Associated Window list. These windows can be activated with
those defined in the Screen Set. It is not necessary to include
the windows defined in the Screen Set in the Associated Win-
dow list.

Any Browse or memo windows or desk accessories you would
like to access with your screens should be included in the Asso-
ciated Window list.

Rule 1 — to access a memo window while in a modal READ,
include the database alias in the associated window list.

Rule 2 — To access a Browse window while in a modal
READ, include the Browse window title (by default, the
database alias) in the Associated Window list.

For more information and an example of the Associated Window
list and the READ WITH clause, see the section on Coordinating
Browse with Screens later in this chapter.

D2-13

Your Working Environment

Your Working Environment

D2-14

Working in 50 Line Mode

If your machine supports an extended display mode, use it! Devel-
oping in 50 line mode allows you to display many code snippet
windows simultaneously. You can see the code for one object while
creating code for another object and, at the same time, see the
Design window for the screen. You can also have several Screen
Design windows open at once.

Cutting, Copying and Pasting Between Windows

You can cut, copy and paste code from one editing window into
another even if the code is from different screens. You can also
cut, copy and paste objects between several Screen Design win-
dows. When you copy and paste an object from one screen to an-
other, all the information associated with the object (including any
code snippets) is copied as well.

Manipulating Code Snippet Editing Windows

You can size, minimize and dock code snippet editing windows just
as you can other text editing windows. When you save the screen,
the state of windows is saved as well. When you open the screen,
all code snippet editing windows appear as they did when you
closed the screen.

From the Screen menu popup you can choose Open All Snippets
or Close All Snippets to open and close all code snippet editing
windows at once. When a code snippet window is open, the clause
or option with which the snippet is associated is dimmed in the
corresponding dialog.

This provides you with a visual clue as to the state of the window.
All open code snippet editing windows are listed at the bottom of
the Window menu popup. You can make any code snippet editing
window the active window by choosing it from this menu popup.

Screens

Design Considerations

Design Considerations

Window Types

Your applications should have a consistent look. The appearance
of a window provides the user with a visual clue about the behav-
ior of the window. For example, make all your input screens one
window type, all dialogs another, alerts another type, and so on.

For more information on window types, see the Defining Windows
section later in the chapter.

Screen Controls

Placing controls in a screen reduces the need for menu options. If
you can make a menu option available through a control in the
screen (without making the screen cluttered), do it.

Reserve menu options for seldom used and irreversible options and
keyboard shortcuts for screen controls. For more information on
designing menus, see the Menus chapter in this manual.

Access Order of Screens and Objects

Mouse users can point and click between screens and between ob-
jects in a screen. Keyboard users do not have this option. Design
screens with both types of users in mind.

Screens are accessed in the order they appear in a screen set. Ob-
jects within a screen are accessed in the order they are defined.
This is the order the objects are numbered in the Screen Design
window.

Objects should be ordered in a screen in an intuitive manner. Or-
dering objects by row, column or region is desirable.

For information on ordering screens in a screen set and objects in
a screen, see the Screen Builder chapter of the FoxPro User’s
Guide.

Disabled Item

Screens

If a field or control has no meaning until another action occurs (for
example, you fill in a field to enable a push button), it should be
disabled. A code snippet for one object can include code that will
enable other fields and controls. Examples in this chapter
demonstrate how to achieve this result.

D2-15

Design Considerations

D2-16

Hot Keys

Mouse users can point and click anywhere in the screen. Key-
board users do not have this option. Hot keys allow the user to
move to a desired control with one key press.

For example, when a user edits one field in a screen, a hot key can
enable him to access a control that will save the information.

If a user is in a GET field or an EDIT region, he will need to exit
the GET field or EDIT region before the hot key is available.

Default and Escape Push Buttons

A default push button is surrounded by « » and is automatically
chosen when the user presses Ctrl+Enter. Default buttons usually
take an action (for example, save the information in the screen)
before exiting the screen.

An escape push button appears as any other push button and is
activated when the user chooses the button or presses Escape.
Escape buttons usually exit the screen without taking any action
(cancel).

SCATTER MEMVAR and GATHER MEMVAR vs. Direct Editing

The SCATTER MEMVAR command allows you to create memory vari-
ables for every field in the current database record. When you
create these variables and define the fields with an “m.” prefix, the
editing of fields takes place on the variables, not directly on the
database. This allows the user to cancel out of or escape from a
screen without saving any changes.

If variables are not created, when the user exits the READ (by mov-
ing to another record or exiting the screen), any modifications to
the field are saved immediately. When you edit variables, the
changes are not saved until a GATHER MEMVAR command is exe-
cuted.

Most of the screens in the ORGANIZER application have a SCATTER
MEMVAR command in the READ SHOW code snippet. The GATHER
command is located in the VALID code snippet for the Save push
button. Changes are not saved until the user chooses the Save
push button.

Screens

Color

Screens

Design Considerations

When you assign a color scheme to a screen, every object in the
screen takes on the attributes of that color scheme. You can, how-
ever, assign a different color scheme to individual objects within a
screen.

Because an object can be colored differently at different
points (selected, disabled, enabled, hot key), a single color
pair is not enough to color the object. For this reason, a
color scheme is required.

If an object is assigned a color scheme which is different than the
scheme assigned to the screen, the color scheme assigned to the
object takes precedence. Every object in a screen can be defined
with a different color scheme.

For information on assigning color schemes to objects, see the
Screen Builder chapter of the FoxPro User’s Guide. For informa-
tion on color schemes, see the Customizing FoxPro chapter in the
FoxPro Installation and Configuration manual.

Following is a list of tips for using color:

e Use color as a complementary feature to provide extra
information for those users who have color capability.

® Colors look best against a background of neutral gray.
Studies have shown colored text is harder to read than black
text on a white background. Beware of light shades of blue,
which are generally the most illegible of all colors.

e If all users of the application have a color monitor, color can
be used to distinguish objects.

D2-17

The Generated Program

The Generated Program

GENSCRN, the FoxPro screen generator, extracts information from
.SCX databases and creates a program file with an .SPR extension.
.SPR programs are generated in the following order:

® Setup Code — Section 1

® Program environment code (opening)
® Open file commands

® Define window commands

® Setup Code — Section 2

® Screen layout commands

® READ command

® Release window commands

® C(lose file commands

® Program environment code (closing)
® Cleanup and procedure code

® READ and object level code snippets

The example on the following pages is from CONVERT.SPR. This
example shows how code appears in the generated program. Ex-
amples of code snippets and how they are used to manipulate spe-
cific screens are described throughout this chapter.

D2-18 Screens

The Generated Program

* Ik hkkh kA Ak h Ak hhkkhkkhkhhkkhkkkkkhkhkhkkhkhkhkhkkhkrdkhhkhkhhhkrhhhhkhik

* * 07/18/91 CQONVERT. SPR 11:26:39 * Program

* dhkkkkhkkhkkkkkk *kkkkk hkkkkhkkkkhkkkkkkhhkk kA kA AAhhkhk Header_'rhis

* * Fox Software Systems Group * code is always

* * * generated. The

* * Copyright (c) 1991 Fox Software, Inc. * L :::::::f':) d"::'

* * * . .

)) 134 W. South Boundary) tion in the pro-
Perrysburg, OH 43551 gram header is

* * * taken from the

* * Description: * Screen Code

* * This program was autamatically generated by GENSCRN. * Options dialog.

* * *kkkkkk *kkkkk * %k kkk hhkkhkkhkhkhkhkkhkhhkhkhkkhkhkkkhkkkhkhkk

* ek ek ko k ko ok ke kok ok ok ok ok ok ok ek ok ok ek ok ek ke ok ke ko k ke k ok ke ok
* * CONVERT Setup Code - SECTION 1 *
* Kk ke dok ok ek ke Kk ke ok ok ok Xk Kk *ok ok k *k
#REGION 1

m.quitting = .F.

IF RDLEVEL()=0
SET PROCEDURE TO utility
ON ERROR DO errorhandler WITH MESSAGE(), LINENO()
CLEAR PROGRAM

CLEAR GETS
Setup Code — Section 1 — You
can define code to be inserted
IF SET(“TALK”) = “ON" h
SET TALK OFF and executed at the beginning

of the generated program by

m.talkstat = "ON" — placing generator directives in

ELSE the setup code for the screen
m.talkstat = “OFF” (defined in a code snippet with
ENDIF the Setup option in the Screen
Layout dialog).
m.area =0
m.exact = “”

m.hidecam = WVISIBLE (“camand”)

DO setup

ENDIF

Screens

D2-19

The Generated Program

D2-20

#REGION 0
REGIONAL m.currarea, m.talkstat, m.campstat

IF SET(”TALK”) = “ON”
SET TALK OFF
m.talkstat = “ON”
ELSE
m.talkstat = “OFF”
ENDIF
m.compstat = SET(“COMPATIBLE”)
SET COMPATIBLE FOXPLUS

m.currarea = SELECT()

Program Environment Code — This in-
formation is always generated. This
|___ code defines regional variables and
makes environment settings for the en-
tire generated program.

* * * % R e e
* * CONVERT Databases, Indexes, Relations *
* *% * * %% * %% *hkkkkhkkkkk
IF USED("units”)
SELECT units
SET ORDER TO 0
FLSE
SELECT 0
USE (LOCFILE(“dofs\units.dbf”, "DBF", "Where is units?"));
AGATN ALIAS units ; Open file commands — These commands are
ORDER 0 generated when environment information has
ENDIF been saved (in the Screen Layout dialog) and

IF USED(”factors”)
SELECT factors
SET ORDER TO 0

L Open Files is checked in the Generate Screen
dialog. You can suppress the generation of
these commands by unchecking the Open Files
check box. If you choose to suppress the gen-
eration of these commands, you can open files

FLSE in the setup code for the screen.

SELECT 0

USE (LOCFILE(“dbfs\factors.dbf”, "DBF", "Where is factors?"));

AGAIN ALIAS factors ;
ORDER 0O

ENDIF

SELECT units

Screens

The Generated Program

* * * % * %k * *hkkkhkkhkhkkhkkhkhkkxkkhkkhk
* * Window definitions *
* ****'k*****‘k************************‘k********‘k**************

Window Definitions —
DEFINE WINDOW com-
mands are generated when

IF NOT WEXIST (“convert”)
DEFINE WINDOW convert ;

FROM INT((SROW()-15)/2), INT((SCOL() -53) /2) ; a window is defined (in the
TO INT((SROW()-15) /2)+14, INT((SCOL() -53) /2) +52; Screen Layout dialog) and
TITLE “ Conversions ” ; Define Windows is checked
FLOAT ; }———— in the Generate Screen
CLOSE ; dialog. You can suppress

the generation of these
uE commands by unchecking
! this check box. If you

SYSTEM. ; choose to suppress the
COLOR SCHEME 8 generation of these com-

ENDIF mands, you can define the

windows in the setup code

for the screen.

SHADOW ;

* * * %

* * CONVERT Setup Code - SECTION 2 *
* *hk K Kkkkkhkkkhkkkkkxkkkkkhkhhhkkhk
*#REGION 1

SET UDFPARMS TO REFERENCE
PUSH MENU _MSYSMENU

Setup Code — Section 2 —
This segment of the gener-
ated program includes all
setup code that follows the
| #SECTION 2 generator direc-
tive. If the setup code con-

m.size = ALEN(fromarry) tains no generator directives,
DIMENSION toarry [m.size] it is placed in this segment of
FOR m.i = 1 TO m.size the screen program.

fravarry[m.i] = ALLTRIM(fravarry[m.i])
toarry[m.i] = fromarry(m.i]
ENDFCR

m.fromoop = framarry (1]
m. topop toarry[1]

Screens D2-21

The Generated Program

* * * * Kk ok kkk *

Fe e ke ok ok ks Sk e ok ok sk ok ok ok ke ke ke e ok ok ok ke ko ko ke ke ok

* * CONVERT Screen Layout *

* *kkk Fek ok k Kk kkokok ok ok %k K kdkeok ok okokok ok *kkkk *hhkkhkkhkhkhkhkkhkhkhkhkkkx

*HREGION 1
IF WVISIBLE (“convert”)

ACTIVATE WINDOW convert SAME

ELSE

The window is activated with a NOSHOW

ACTIVATE WINDOW convert NOSHOW |[+— clause so the objects can be drawn and the

ENDIF
@ 7,28 1O 12,49 ;
COLCOR W/BG
@ 7,1 T012,22 ;
COLOR W/BG
@ 7,3 SAY “ From: ”
@ 7,30 SAY “ To: ”
@ 8,2 GET m.frawal ;
SIZE 1,20 ;
DEFAULT “ * ;
PICTURE “@TUK” ;
VALID convrt (toval,
@ 9,4 GET m.frampop ;
PICTURE “@™" ;
FROM framarry ;
SIZE 3,16 ;
DEFAULT 1 ;
VALID _px800j5d3() ;

@ 0,17 GET m.unittype ;

window shown with all the objects in place.
This produces a “snappier” effect.

Screen Layout commands —
One command is generated for
each object in each screen.

frawal, “right”)

PICTURE “@*RVN Ar\<ea;\<Length;Ma\<ss;Spee\<d; \<Temperature; T\<ime; Volu\<me” ;

SIZE 1,15,0 ;

DEFAULT 1 ;

VALID _px80076xq()
@ 0,10 SAY ” Type: ”

IF NOT WVISIBLE (“convert”)

ACTTIVATE WINDOW convert

ENDIF

ACTIVATE WINDOW command — The ACTIVATE

| WINDOW command includes a generated window
name or a name you specify in the Screen Layout
dialog.

READ CYCLE ;
WHEN _px800j7hk() ;

Controlled by options in the Generate Screen
— dialog, a READ or READ CYCLE command is

DEACTIVATE _px800]7hq() always generated.

Screens

The Generated Program

* dhkkkkkhkkkkkkhkhkkhhhhhkk
* *
* *
* *

dkkkkkkkkkkhkhkkhhkhkk

*

Closing Databases *

*

* * % Kk %k k Kk Kk kkkkk*k * % *

IF USED(“units”)
SELECT units
USE

ENDIF

IF USED(“factors”)
SELECT factors
USE

ENDIF

SELECT (m.currarea)

#REGION 0

IF m.talkstat = “ON”
SET TALK ON

ENDIF

IF m.carpstat = “ON”
SET COMPATIBLE ON

% %k ok ke kok Kok ok ok

Close file commands — These commands are
generated only when the Close Files option is
checked in the Generate Screen dialog. You can
suppress the generation of these commands by
unchecking this check box.

Restore environment code — This code is al-
ways generated. This code reverses the set-
tings made with the program environment
code at the beginning of the program.

ENDIF

* *k Kk * *kkkkkkkkkkk * %k k% * Kk kk * ** k% *k Kk k
* * CONVERT Clearup Code *
* * Kk Kk Kk kkkk * %k ** * %k kK *k * %k Kk kk *kkkkkkkk * * *
*H#REGION 1

IF m.quitting OR RDLEVEL()=0
RELFASE WINDOW convert
ENDIF
POP MENU _MSYSMENU
SET UDFPARMS TO VALUE
IF RDLEVEL()=0
DO clearmp
SET PROCEDURE TO
ENDIF

Cleanup code — This code snip-
pet is defined with the Cleanup &
Procs... option in the Screen Lay-
out dialog and is always included
in the generated program when
cleanup code has been defined.

Screens

D2-23

The Generated Program

*

* CONVRT - Do the conversion.

*

FUNCTION convrt

PARAMETER m.new, m.old, m.direction

PRIVATE m.toid, m.framid, m.tounit, m.frommnit

IF (VAL(m.old) = 0 AND m.unittype<>"Temperature") OR ;
(m.old = SPACE(19) AND m.unittype="Temperature") CR ;

m.topop = m. frampop User-named procedures are

m.new = m.old defined in the Cleanup and

SHOWN GETS Procs... code snippet and ap-

RETURN pear before the generator-
ENDIF named procedures.

m.new = stripzeros (m.new)
m.old = stripzeros (m.old)

SHOW GETS

* dhkkkhkkhkkhkkkkk * ** * * k% *kk * Kk kk * * Kk kkk
* * _PX80QJ5D3 m. frompop VALID *
* * *
* * Function Origin: *
* * *
* * From Screen: CONVERT, Record Number : 9 *
* * Variable: m. frompop *
* * Called By: VALID Clause *
* * Object Type: Popup *
* * Snippet Nurber: 1 *

* * Kk * * k% *k %k * *kkkk *kkk * *kkkk

*

FUNCTION _px8003j5d3 && m.frampop VALID
#REGTON 1
IF EMPTY (m. fromval)

_CURORJ = OBJINUM (m. framval)

SHOW GET m. framval

RETURN .F.

— Object level clause

ENDTF
= convrt (m.fromval, m.toval, “left”)

D2-24 Screens

Screens

The Generated Program

% kK *kk ok kK ok *

* *_PX80QJ7HK Read Level When
* *

* * Function Origin:

* *

* * From Screen: CONVERT

* * Called By: READ Statement
* * Snippet Nurber: 6

*kkkkhkkkdxhkxhkhrk

*

* *k*k *kk*k * % ** * *

*

FUNCTION _px80077hk && Read Level When

*

* When Code from screen: CONVERT

*

H#REGION 1

DO convmenu.npr

IF ROLEVEL()>1
SET SKIP OF POPUP _MRECORD .T.
SET SKIP OF POPUP reports .T.
SET SKIP OF POPUP cardinfo .T.

ENDIF

*kkkkk *okdkkdokkok

— READ level clause

D2-25

Screen Layout

Screen Layout

D2-26

Choose Screen Layout... on the Screen menu popup to bring for-

ward the Screen Layout dialog.

C+> DeskTop C > Windou
Name: <Type...>
Title:
Footer:
Size: Screen Code:
Height: 25 [1 Setup...
Width: 89 [1 Cleanup & Procs...
Position: READ Clauses:
Rou: [1 Activate... [1 Shou...
Column: [1 Valid... [1 UWhen...
[X]1 Center [1 Deactivate...
Environment: [X1 Add alias
< Save > < Restore > < Clear >

< Cancel >

Screen Layout Dialog

This dialog contains options for defining a window including color,
sizing and position, defining code snippets for setup and cleanup
code, and defining code snippets for READ level clauses.

Screens

Setup Code

Screens

Screen Layout

Code in the Setup code snippet can be used to:

Save the current environment (to be restored later). This
often includes saving the value of certain SET commands.

Create a new environment.
Define memory variables and arrays.

Save the current menu system by pushing it on the menu
stack. Pushing menus is described in the Menus and
Coordinating Screens and Menus chapters in this manual.

Call other programs (for example, a program to install a menu
system).

Receive parameters (using generator directives).

Specify the error handling routine that is called when an
error is generated (ON ERROR).

Open files.
Define windows.

Specify a procedure file.

D2-27

Screen Layout

Setup Code Example 1

This example is from FAMILY.SCX. This screen is used in the Fam-

ily & Friends module of the application.
define variables and push a menu system.

Setup code is used to

PRIVATE m.adding, m.editing

m.adding = .F.
m.editing = .F.

amily/Friends Manager
Last Name: First Nawme: Initial:
Gossnergan 1 < Help >
Spouse: (LN Birth:
Phone Number: E[ERNLEI:ISI < Neu >
Address: EYANNATITHEN
Boulder 1
Notes: < Save >
[X] Send Holiday Cards
[1 Special Diet Needs
[1 Exchange Gifts < Cancel >
CTRL+TAB to exit

e |

FAMILY.SCX

Make variables PRIVATE.

Define and initialize memory
variables.

Create memory variables

SCATTER MEMVAR MEMO

D2-28

for all fields (including
memo fields).

Screens

Screen Layout

Regional Variables

Screens

Often, a control in a screen uses the same variable name as a
control in another screen. When these screens are combined into a
screen set and a single program is created, a conflict occurs with
the variable common to both screens. REGIONAL variables are
used to avoid this type of conflict.

REGIONAL variables are similar to private variables. Memory vari-
ables or arrays with identical names can be created without inter-
fering with each other — their values are protected within a “re-
gion”.

Declaring screen variables as regional in the setup code ensures
that a variable is not affected by a variable with the same name
used in another screen in the screen set. If you declare variables
in screens in a screen set as REGIONAL variables in the setup code,
FoxPro automatically resolves the conflicts.

When regional variables are declared in the screen setup code, the
GENSCRN screen generating program automatically inserts the nec-
essary #REGION compiler directives needed to resolve memory vari-
able name conflicts. #REGION compiler directives are inserted at
the beginning of the setup code for each screen, at the beginning of
the screen layout statements for each screen, at the beginning of
the cleanup code for each screen and in the READ and Object level
code snippets for each object.

For more information on REGIONAL variables, see the REGIONAL
command in the FoxPro Language Reference.

D2-29

Screen Layout

Setup Code Example 2

This example is from CONTROL1.SCX, a utility screen used through-
out the ORGANIZER application. Setup code is used to define re-
gional variables.

< Next > < Prior > < Top > < Bottom > < Locate > « OK »

CONTROL1.SCX
Generator directive (de-

#SECTION 2 scribed in next section).

I REGIONAL m.choice, m.toprec, m.bottamrec, m.saverecno, m.quitting
m.qutting = . L Make variables REGIONAL.
m.choice = “OK Initialize the variable for

the “OK” push button.

IF HOF() -

O BOTTOM :flthe fllgt_!s opte:\han: tatt end of g
ENDIF ile, position at the bottom record.
m.saverecno = RECNO()
o o8 Initiali iabl ith t
m.toprec = RECNO() nitialize variables with top,
CO BOTTOM bottom and current RECNO().
m.bottomrec = RECNO()
GO m.saverecno Return the record pointer to

the current record.

D2-30 Screens

Screen Layout

Generator Directives

Screens

Generator directives were implemented in FoxPro to allow the user
to include code in a generated screen program that would not oth-
erwise be available through the Screen Builder.

Generator directives are commands that communicate solely with
GENSCRN, FoxPro screen program code generator. Generator direc-
tives do not appear in generated screen program code. Generator
directives must be placed in the Setup code for a screen. Only one
directive of each type can be included in the code.

#SECTION 112

These generator directives allow you to split the setup code for a
screen into two sections. Setup Code — Section 1 is generated at
the beginning of the .SPR program. Setup Code — Section 2 is
generated after the DEFINE WINDOW commands and before the
Screen Layout commands. You would split the setup code if you
wanted to include a PARAMETER statement or an ON ERROR state-
ment in the screen program.

Precede commands to be inserted in section one of the setup code
with a #SECTION 1. If you would like other setup code placed in
Setup Code — Section 2, a #SECTION 2 generator directive should
follow commands in section 1.

#SECTION 1
PARAMETER X, V, 2
<other commands>
#SECTION 2
<other commands>

#READCLAUSES <clauses>

This generator directive allows you to specify clauses to be placed
at end of a READ command that are not available through the
Screen Builder. Typical clauses to include are TIMEOUT, SAVE,
OBJECT, NOMOUSE and COLOR.

#READCLAUSE TIMEOUT SAVE OBJECT COLCR
* These READ clause must be

* placed on one line in the
* getup code.

D2-31

Screen Layout

D2-32

#ITSEXPRESSION <char>

This generator directive allows you to specify a single character
that can be used to indicate that picture clauses, window titles and
window footers are expressions instead of literal strings.

#ITSEXPRESSION ~

#SECTIONL

varname = “Fred”

* A window title can be defined

* as ~<varname>. When the window is displayed, Fred
* appears as the window title.

The #SECTION1 generator directive is included in this example be-
cause the windows are defined before Setup Code — Section 2 is
executed. #ITSEXPRESSION is applicable only to windows defined in
the Screen Layout dialog in the Screen Builder.

#WNAME <string>

This generator directive allows you to substitute the current win-
dow name for <string> wherever it occurs in code. This allows
you to use generic code which is independent of the unique window
name generated by GENSCRN.

The following statement is defined in setup code for screen:
#HMRAME fred

The following statements are defined in the ACTIVATE clause for
the window:

TF WONTOP (' fred’)
<statements>
ELSE
<statements>
ENDIF

A unique name for current window is substituted for “fred”. It is
not necessary to know actual window name.

With the above example, the following code appears in the gener-
ated screen program:

IF WONTOP('_PV6ONIAGH’) && Unique named window
<statements>

EILSE
<statements>

ENDTF

Screens

Screen Layout

#REDEFINE

By default, GENSCRN generates code to check for the existence of a
window before defining it. This generator directive allows you to
suppress the commands that check for existence of a window and
automatically redefine window.

Screens D2-33

Screen Layout

Setup Code Example 3

This example is from ADDUSERS.SCX, a screen called in the Credit
Cards module of the ORGANIZER application. Setup code is split

into two sections.

In section two of the setup code, an array is

defined and filled with a SQL SELECT statement.

Selection list:

Authorized users:

Jon Jeager LGN, VR D B Geof frey Schuartz
Ardeu Schuartz Nadine Schuartz
Bonnie Schuartz < ¢ Remove >
Geoffrey Schuartz
Nadine Schuartz < Remove All >
Pat Schuartz Last: < Help >
< Neu name > | |
First:
« OK » | |
ADDUSERS.SCX

#SECT1

PARAMETER m.cardid

Generator directive.
Parameter statement.

#SECT2

Generator directive.

PRIVATE m.mover, m.user, m.allcnt, m.saverec, m.usrcnt, m.limit,;
allusers, m.status, m.savearea,

SET EXACT ON «——— Environment setting.

m.user = 1
m.userlast = “”
m.status = .T.
m.savearea = SELECT()
DIMENSION allusers(1, 3]
allusers = “*

IF NOT locatedb(“carduser”,1)

RETURN
ENDTF

m.userlast, m.userfirst

Make variables
private.

Define and initialize variables;
create an array to prevent an
error if CARDUSER.DBF is

empty.

Call UDF LOCATEDB() to
locate .DBF and the associated
.FPT. LOCATEDB() is defined
in MAIN.PRG.

m.saverec = RECNO()

SELECT DISTINCT lastname, firstname, ;
AILLTRIM (firstname)+" “+ALLTRIM(lastname) ;

FROM carduser ;

INTO ARRAY allusers

D2-34

Fill the array using
SQL SELECT.

Screens

m.allcnt = ALEN(allusers,1)

IF EMPTY (users)
m.usrcnt = 0
ELSE
m.usrcnt = 1
m.limit = ALEN(users,1)
DO WHILE m.usrcnt <= m.limit
IF EMPTY (users[m.usrcnt,1])

EXTT
ENDIF
m.usrcnt = m.usrcnt + 1
ENDDO
m.usrcnt = m.usrcnt - 1
ENDIF

Screens

Screen Layout

(users) is an array that
was created in the previ-
ous screen.

Check the size of the Authorized
Users list so that blank records
will not be displayed.

D2-35

Screen Layout

D2-36

Open Files

When screens are generated, code to open files, set index order, set
relations, etc., is generated using the environment information
saved with the screen. These commands are generated and exe-
cuted prior to the DEFINE WINDOW commands. The Open Files
check box in the Generate Screen dialog allows you to suppress the
generation of these commands.

We recommend that you allow the generator to create the open file
commands; however, you can define these commands in the Setup
code snippet.

Defining Windows

When screens are generated, code to define windows is generated
using the window definition information saved with the screen.
These commands are generated and executed prior to the com-
mands in the Setup Code — Section 2 code snippet. The Define
Windows check box in the Generate Screen dialog allows you to
suppress the generation of these commands.

We recommend that you allow the generator to create the DEFINE
WINDOW commands; however, you can define these commands in
the Setup code snippet.

If you do not name a window in the Screen Layout dialog, a unique
name is generated for the window. This unique name changes
every time you regenerate the screen.

Screens

Screen Layout

Cleanup and Procedure Code

Cleanup and Procedure code is generated and executed at the end
of the .SPR program. This code snippet can be used to:

® Restore environment settings.

® Release public memory variables (by name).
® Restore the previous menu system.

® Release windows.

® (Close files.

® Define user-named procedures.

Cleanup and procedure code is used to restore the environment
and release public memory variables. It is also used to pop menu
systems.

Screens D2-37

Screen Layout

Cleanup and Procedure Code Example 1

This example is from FAMILY.SCX, a screen called in the Family &
Friends module of the ORGANIZER application. This code snippet
restores environment settings and pops a menu system.

IF m.quitting
RELEASE WINDOW fardly
RELEASE WINDOW controls
ENDIF

—— Release windows.

D2-38 Screens

Screen Layout

Releasing Public Variables by Name

You should release public variables by name in the cleanup code
for a screen.

Issuing a RELEASE ALL command in the cleanup code for a screen
will release all variables in the currently executing program.

Close Files

When screens are generated, code to close files is generated auto-
matically. These commands are executed before the user-defined
cleanup code. The Close Files check box in the Generate Screen
dialog allows you to suppress the generation of these commands.

We recommend you allow the generator to create the open file com-
mands, however, you can define commands to close files in the
Cleanup and Procedure code snippet.

Releasing Windows

RELEASE WINDOW <window name> commands are generated auto-
matically for every window defined in a screen set. The Release
Windows check box in the Generate Screen dialog allows you to
suppress the generation of these commands.

We recommend that you allow the generator to create these com-
mands; however, you can close them in the Cleanup and Procedure
code snippet.

If you define RELEASE WINDOW <window name> commands, it is
best to name the window (in the Screen Layout dialog).

User-Named Procedures

Screens

If a procedure is used by more than one object in a screen, it is
best to call the procedure with a DO command in a code snippet for
the associated clause or as a UDF in an expression for the associ-
ated clause. This “user-named procedure” can be defined in the
cleanup and procedure code or it can be any procedure located in
your path.

Using a user-named procedure ensures that when you modify the
procedure, the changes are reflected in the behavior of all objects
with which the procedure is associated. If an identical procedure
is defined individually in multiple code snippets, you would need to
modify the procedure in every code snippet.

D2-39

Screen Layout

D2-40

When you define a procedure in the code snippet, the generator
assigns the procedure a unique name that changes every time the
screen is regenerated. The unique name is inserted in a FUNCTION
command and the code in the code snippet follows.

When you define a user-named procedure, you must use a
PROCEDURE or FUNCTION command (depending on how the proce-
dure is called). If you want a value other than .T. returned, you
must issue a RETURN at the end of the procedure. These com-
mands are not generated as they are with procedures defined at
the READ and object level.

Any procedure, whether it is defined in a code snippet or a user-
named procedure, can call another procedure. You can define that
procedure in the Cleanup and Procedure code snippet. The proce-
dure can also be any procedure located in your path.

Screens

Cleanup and Procedure Code Example 2

This example is from ADDUSERS.SCX., a screen called in the Credit
Cards module of the ORGANIZER application. The Last and First
GET fields in ADDUSERS.SCX call a procedure named ESCHANDLER
from the WHEN clause code snippet.

Selection list: Authorized users:

Jon Jeager < Move » >
Ardeu Schuartz

Geoffrey Schuartz
Nadine Schuartz

Bonnie Schuartz < + Remove >

Geoffrey Schuartz

Nadine Schuartz < Remove All >

Pat Schuartz Last: < Help >
< Neu name > || |

First:
<« 0K » I |
ADDUSERS.SCX

The WHEN clause code snippet contains the following code:
ON KEY LABEL esc DO eschandler

This procedure is defined in the cleanup code for the screen and
contains the following code:

*

* ESCHANDLER - Handle ESC-aping out of a field.
*

PROCEDURE eschandler
ON KEY ILABEL esc
m.userlast = SPACE(22)
m.userfirst = SPACE(14) ———— Abort entry of new name.
SHOW GET m.userlast DISABLE
SHOW GET m.userfirst DISABLE

Screens D2-41

D2-42

Cleanup and Procedure Code Example 3

This example is from CONVERT.SCX, a screen called in the Conver-
sions module of the ORGANIZER application. In this screen, the
From and To GET fields use an expression to call a UDF.

Conversions
Area
Length
Mass
Speed
Temperature
Time
Uolume

— To:

31,556, 925. 97

Seconds n

CONVERT.SCX

The following expression is defined for the VALID clause for the
From GET field:

convrt (toval, fromval, “right”)

The following expression is defined for the VALID clause for the To
GET field:

convrt (toval, fromwal, “left”)

These expressions call CONVRT(), a UDF defined in the cleanup
code for the screen. CONVRT() contains the following code:

*
* CONVRT - Do the conversion.

*

FUNCTION convrt

PARAMETER m.new, m.old, m.direction

PRIVATE m.toid, m.fromid, m.tounit, m.fromnit

IF (VAL(m.old) = 0 AND m.unittype"Tamperature") OR ;

(m.old = SPACE(19) AND m.unittype="Tenmperature") OR ;
m.topop = m. frampop

Screens

Window Definitions

It is not necessary to name windows in the Screen Layout dialog.
If you do not specify a window name, a unique name is created
during generation. Allowing FoxPro to name the window
eliminates the possibility of names colliding with window names in
other screens of the application. This unique name changes every
time you generate the screen.

Name your windows if you want to reference the windows by name
in other procedures or if your application includes context-sensitive
help. For information about incorporating context-sensitive help in
your applications, see the chapter titled Customizing Help in this
manual.

Positioning Windows

By default, all windows are centered on the monitor. You can
specify the position of the window in the Screen Layout dialog.
These coordinates are saved in the .SCX database.

The Arrange push button in the Generate Screen dialog allows you
to reposition the windows in a screen set prior to generation. If
the screen set is saved in a project, these coordinates are saved in
the .PJX database. Arranging windows does not change the coor-
dinates saved in the .SCX database.

Window Types

Screens

The following list describes the window types available and sug-
gested uses for each window type:

User This window type is used when you want to control
" window attributes (close, float, zoom, etc.) and window

color.
System This window type is used when you want to mimic

FoxPro system windows.

Dialog Typically, this window type is specified for windows
that are modal in nature. In modal dialogs, informa-
tion must be completed in the dialog before the dialog
can be exited. In the FoxPro interface, the Setup
dialog is modal.

Alert This window type is used to display warning and con-
firmation information. Alerts are typically modal.

D2-43

READ Level Clauses

You can define READ level code snippets for the ACTIVATE, VALID,
DEACTIVATE, SHOW and WHEN clauses.

The following list is the order of execution for READ events and
clauses when the READ is first issued:

® READ level WHEN clause

® ACTIVATE WINDOW

® READ level ACTIVATE

* READ level SHOW!

® GET level WHEN for the first GET

Following is a list of the order that READ clauses are called when a
new window is activated:

¢ VALID for the field being exited

o DEACTIVAzTE old window (window name returned by
WLAST())

® ACTIVATE new window (window name returned by WONTOP())
® READ level DEACTIVATE

® READ level ACTIVATE (if the window brought on top is a READ
window)

® WHEN clause for the new field

1 The sHow clause is also executed whenever the SHOW GETS
command is issued. The SHOW GETS command can be issued
in any code snippet in the screen.

2The DEACTIVATE routine is executed when any window is
brought forward and the deactivating window is a READ win-
dow. The DEACTIVATE routine is not executed if the window
brought forward is launched from a VALID, WHEN, DEAC-
TIVATE, ACTIVATE or SHOW clause.

D2-44 Screens

READ Level ACTIVATE Example

Screens

This example is from CLIENTS.SCX., a screen called in the Client
Manager module of the ORGANIZER application. The Client
Manager module is an example of displaying Browse windows with
screens. This procedure is used to select the CLIENTS database
when the Account Details window is active and to prohibit the
closing of the Browse windows.

For more information about coordinating Browse windows with
screens, see the section titled Coordinating Screens with Browse
later in this chapter.

Client Manager

Company: FTIRETITTES ‘ Balance: 2188.18

Contact: IR SLES Notes:
[LIS I8 928 Recsize Drive
Fairmont AuUl26554 CTRL+TAB to exit
Area—Phone: ELE-E¥aiig:tzrg EXT: P35 Cuisine

Client Type: (+> Active < > InactiveC > Prospect

< Help >

L

< Neu > < Save > < Cancel > <Balance>

< Next > < Prior > < Top > < Bottom > < Locate > <« OK >

Client List A 0 Deta
Company Trans_type| Trans_date] Ant Service

Aspen Planning & Inc. Billing 81-/82/91 622. 82| Memo
American Forum Expense 81-/86-91 125.97] Memo

CLIENTS.SCX

D2-45

D2-46

IF UPPER (WLAST())

“ACCOUNT DETATLS” OR_;l

UPPER (WLAST ()) = “DETAILS.SERVICE”

SELFCT clients
SHOW GETS
ENDIF

If Browse window was the last
window on top, reselect the
CLIENTS database because ac-

TF NOT WEXIST (“Account”)
SELECT details
BROWSE LAST NOWAIT NORMAL
SELFCT clients
SHOW GETS
ENDIF

IF NOT WEXIST(“Client”)
BROWSE LAST NOWAIT NORMAL
ENDIF

tivating the Browse window
automatically selects the as-
sociated database.

__If a Browse window is closed,
reopen it.

Screens

READ Level SHOW Example 1

This example is taken from FAMILY.SCX, a screen called in the
Family & Friends module of the ORGANIZER application. The
SHOW clause is used to create variables for every field in the
database and move data from the current record into correspond-

ing variables.

Family/Friends Manager

Gossnergan f

Last Name: First Name: Initial:

Spouse: [N

CTRL+TAB to exit

IF NOT adding

Birth: [SRQUg-E!

[X] Send Holiday Cards
[1 Special Diet Needs
[1 Exchange Gifts

FAMILY.SCX

SCATTER MEMVAR MEMO
ENDIF

Screens

< Help

< Neuw

< Save

< Cancel

See if this is a new record.

Create variables for all fields

(including memo fields) and
move data from the current
record into variables.

Editing takes place on
variables, not directly on
database fields.

D2-47

O

D2-48

The SHOW clause is executed whenever the SHOW GETS command

- is issued. The SHOW GETS command can be defined in almost any

code snippet in the screen.

Do not place the SHOW GETS command in a SHOW snippet.
This will cause FoxPro to make a recursive call and return
the error “Insufficient Stack Space.”

SHOW GETS redisplays all GET objects (fields, text, radio or invisible
buttons, check boxes, popups, lists and text editing regions). When
objects are redisplayed, you can specify whether they are enabled
or disabled.

SHOW GETS vs. SHOW GET

All GETS are redisplayed with SHOW GETS. Individual objects can
be redisplayed with SHOW GET or SHOW OBJECT. SHOW GETS will
execute the READ level SHOW routine. SHOW GET and SHOW OB-
JECT will not.

Screens

READ Level SHOW Example 2

This example is taken from CONTROL1.SCX, a utility screen used
throughout the ORGANIZER application. The SHOW clause is used
to enable and disable buttons depending on the position of the
record pointer in the database.

¢ Next > < Prior > < Top > < Bottom > < Locate > « OK »

CONTROL1.SCX

IF EOF()
GO BOTTOM
ENDTF
m.saverecno = RECNO() Save current, top and
GO TOP bottom RECNO() to
m. toprec = RECNO() variables.
GO BOTTOM
m.bottomrec = RECNO()
GO m.saverecno
IF RECNO() = m.bottamrec
SHOW GET m.choice, 1 DISABLE Enable/Disable buttons if
SHOW GET m.choice, 2 ENABLE record pointer is positioned
SHOW GET m.choice, 3 ENABLE on bottom record.
SHOW GET m.choice, 4 DISABLE
ELSE
IF RECNO() = m.toprec Enable/Disable buttons
SHOW GET m.choice, 1 ENABLE | if record pointer is
SHOW GET m.choice, 2 DISABLE positioned on top
SHOW GET m.choice, 3 DISABLE record.
SHOW GET m.choice, 4 ENABLE
ELSE | Enable all buttons if record
SHOWN GET m.choice ENABLE — pointer is on any record
ENDIF except top or bottom record.
ENDTF —

Screens D2-49

D2-50

READ Level SHOW Example 3

This example is taken from CREDIT.SCX, a screen called in the
Credit Cards module of the ORGANIZER application. The SHOW
clause is used to SCATTER database fields and create an array for

the Authorized Users list.

Credit Card Manager

Number:
Id: DC1 II 7851-7479-7374-4507

Diner’s Club Jl

IS W P Hl ast Federal Savings
Phone:
Annual Fee: . Purchase:
Expires: Cash Adv:
Due Date: Notes:

Authorized Users:

»Geoffrey Schuartz

CTRL+TAB to exit

Interest Limit
ri11. 0OJN$5000. 80
ril12Z. 00 $800. 89

Nadine Schuartz

Balance: $-218.39

< Edit Users >

< Balance >

I < Help > < Neu > < Save > <Cancel> <Vieu Charges>

CREDIT.SCX

—

PRIVATE m.1i Make this variable PRIVATE.

IF NOT m.adding See if this is a new record.
SCATTER MEMVAR MEMO SCATTER fields to memory
cards = Type variables. (See READ Level

SHOW Example 1)

SELECT carduser

QOUNT' FOR carduser.card_id = m.card_id TO m.usrcrﬂﬂ

IF m.usrcnt<>0
DIMENSION users [m.usrcnt, 3]
COPY TO ARRAY users ;

FIEIDS Lastname, Firstname ;

If there are users in the
database, create an array
for the Authorized Users
list based on Id number.

FOR card id = m.card _id

GO TOP

FOR m.i = 1 TO ALEN(users, 1)
users(m.i,3] = ALLTRIM(users[m.i,2])+
Y YA ALLTRIM (users [m.1,1])

ENDFOR

Screens

SELECT credcard

ELSE
SELECT credcard If there are no card users,
users = " blank the array (users = “”)
SHOWN GET m.user and refresh the display.
ENDIF
FLSE SHOW If card users have just been
GET m.user added, refresh the display.
ENDIF

Screens D2-51

READ Level WHEN Example 1

This example is from CLIENT.SCX, a screen called in the Client
Manager module of the ORGANIZER application. The WHEN routine
is executed each time the READ is executed.

In this example, the WHEN routine is used to install the menu
system associated with the Client Manager screen. This allows
the menu system to be reactivated whenever the user is in a
screen with GET fields. '

Client Manager —

Company: | Batance: zise.18 |

Contact: PSS Notes:
Address: RPN TIN NS TVs)
Fairmont AU VIZ6554 CTRL+TAB to exit

Area—Phone: E[E-EPEERtli EXT: Pp{%:i7] Cuisine

Client Type: C-> Active < > InactiveC > Prospect

<Balance>

< Help > < Neu > < Save > < Cancel >

I < Next > < Prior > < Top

Client List Account Details

Company Trans_type| Trans_date| Ant Service
Aspen Planning & Inc. Billing 81-/82-91 622. 82| Memo
American Forum Expense 01/86-91 125. 97| Memo
CLIENTS.SCX
DO mainmenu.mpr Install the menu system.

*

* release ‘CONVERT’ bar.

*

RELFASE BAR 6 OF _MSYSTEM «———— Disable the Conversions menu
option.

IF VAL(SYS(1001)) < 225000
SET SKIP OF POPUP reports .T.
* | Check memory and then disable
* Labels only if enough memory. menus and options accordingly.
*
IF VAL(SYS(1001)) < 213000
SET SKIP OF BAR 1 OF reports .T.
ENDTF
ENDIF

D2-52 Screens

READ Level WHEN Example 2

This example is taken from ADDUSERS.SCX, a screen called when
you choose the Edit Users push button in CREDIT.SCX, a screen
used in the Credit Cards module of the ORGANIZER application.
The WHEN clause is used to display a message when the user
chooses the Edit Users push button without entering a card id
number in the Credit Card Manager screen.

Edit

System

Record UWindou

Credit Card Manager

Reports Card Info

| Blank entries are not alloued |

r—n Number:

DELETED —— o III I

Selection List:

Authorized Users:

Jon Jeager
Ardeu Schuartz
Bonnie Schuartz

Nadine Schuartz

Pat Schuartz

Geoffrey Schuartz

< Move -+ >

< ¢ Remouve

Geoffrey Schuartz
Nadine Schuartz

Last:

< Remove All

< Help >
— 1

< Neu Name

—
First:

«

OK

»

< Edit Users >

<«

OK

< Balance > »

< Help > < Neu > < Save > <Cancel> <Uieuw Charges>

IF EMPTY (m.cardid)
WAIT WINDOW “Blank
m.status = .F.
RETURN .F.

ENDIF

Screens

ADDUSERS.SCX

entries are not allowed” NOWATT

D2-53

Field Objects and Controls

Field Objects and Controls

D2-54

In a screen, field objects allow you to display and edit data. Con-
trols such as push buttons and check boxes are used to designate,
confirm or cancel actions.

Defining field objects and controls is described in the Screen
Builder chapter of the FoxPro User’s Guide.

Every field object and control in a screen can be assigned clauses.
WHEN, VALID, and MESSAGE clauses can be assigned to all fields
and controls. GET and EDIT fields can also be assigned an ERROR
clause.

The following list describes the execution time of each clause:

WHEN The WHEN clause is executed as you move on to a
Clause field or control. In lists, the WHEN clause is executed
as you move from item to item in the list.

VALID The VALID clause is executed when the cursor exits a
Clause GET or EDIT field and when a control is chosen.

MESSAGE The MESSAGE clause is executed when the cursor is
Clause positioned on a GET or EDIT field and when a control
is selected.

ERROR The ERROR clause is executed when the cursor exits a

Clause GET or EDIT field with invalid data (as defined in a
VALID clause). The ERROR clause is available for GET
and EDIT fields only.

This chapter contains examples of the clauses available for field
objects and controls and how these clauses can be used.

Screens

Field Objects and Controls

Field Objects
Choose Field... on the Screen menu popup to bring forward the

Screen Field dialog.
Field:
() Say () Get C > Edit
< Get... > | |
<« OK »
< Format... > | J
< Cancel >
Range:
[1 Upper... [1 Louer...
[1 When... [1 Error... [1 Scroll bar
[1 Valid... [1 Comment... [1 Allou tabs
[1 Message... [1 Disabled [1 Refresh

Screen Field Dialog

Screens D2-55

Field Objects and Controls

D2-56

When you define a new field, the size of the field in the Design

window is determined in the following manner:

If a PICTURE format is defined in the Format text box, the

field is the defined width of the picture.

If no picture is defined, the field in the Design window is the
size of the field as defined in the structure of the database

unless one of the following is true:

If the field is not defined in the structure and has no picture

If the field is a SAY expression of character type that
includes more than one field or variable, the size of the
fields is concatenated and the field in the Design
window is the total of all the fields in the expression.

If the field is a SAY expression of numeric type and
includes more than one field or variable, the size of the
field in the Design window is the size of the largest
numeric field in the expression.

If the field is a SAY expression of date type, the field
will be eight characters wide (if SET CENTURY is ON the
field will be ten characters wide).

If the field is a memory variable, its size is determined
by its type. Character variables are the length of the
defined string, logical are three characters wide and
numeric are ten characters wide. Date variables are
eight characters wide (if SET CENTURY is ON the date
field will be ten characters wide).

All fields of memo type are defined as the width
specified by SET MEMOWIDTH (the default SET
MEMOWIDTH value is 50).

clause, the size of the field will default to 10 characters wide.

You can manually change the size of fields after they are placed in
the Design window. The size of a field is never automatically

changed once it is placed in the Screen Design window.

Screens

Field Objects and Controls

/@ ... GET/EDIT WHEN Clause Example 1

Screens

This example is taken from RESTAURS.SCX, a screen called from
the Restaurants module of the ORGANIZER application. The WHEN
clause is defined for the Cuisine GET field and is used to execute
an escape routine.

When you choose Other... in the Cuisine popup, code in the VALID
clause for the Cuisine popup enables the Cuisine GET field.

The escape routine is a user-named procedure defined in the
cleanup code for the screen.

Restaurant: [EJZETEYRS
Speciality: |FREIALETILN
[TV IS 171 Dorcas Way < Help >
Cuisine:
< Neu >
Other... 11 “ $50-100 “
Maitre’d: Phone:
Ronald Pecukonis 808g340-70802 < Cancel >
Notes:
[1 Reservations
[X] Credit Cards Order: |
| [1 Valet Parking
[X]1 Handicap Access Recordit n
CTRL+TAB to exit [X]1 Casual Attire

RESTAURS.SCX

ON KEY IABEL esc DO eschandler WITH “newcuis”

D2-57

Field Objects and Controls

D2-58

/@ ... GET/EDIT WHEN Clause Example 2

This example is taken from RESTAURS.SCX, a screen called from
the Restaurants module of the ORGANIZER application. The WHEN
clause defined for the State GET field is used to display a list when

the cursor enters the field.

Restaurant:
Speciality:
Address:

Cuisine:

Restaurant Manager

A&P Steaks
Filet Mignon
5171 Dorcas Uay

< Help >

Surf & Tur" II

[]

Delauare
District of Colu

Florida
Georgia

eu >

ave| >

Maitre’d:

Ronald Pecukonis

P

h
asgado-vooz gl

< Cancel >

Notes:

CTRL+TAB to exit

RESTAURS.SCX

[1 Reservations
[X] Credit Cards
[1 Valet Parking
[X]1 Handicap Access
[X] Casual Attire

Order: |

Record#t ﬂ

PRIVATE staflds, m.choice, m.savearea, m.count, m.lastkey |

m.lastkey = LASTKEY ()
m.savearea = SELECT()

Make variables PRIVATE and
initialize variables. |

If using FoxPro on a

IF NEIWORK () AND NOT' (m.editing OR m.adding) e— network, prevent the

RETURN
ENDIF

TF NOT locatedb(“states”,0)

RETURN
ENDIF

COUNT TO m.count

DIMENSION staflds[m.count, 2]

COPY TO ARRAY staflds

display of the popup, if
not editing or adding
records.

Call UDF LOCATEDB()
(See Setup Code Example 3)

Create and fill array with

records for STATES.DBF

Screens

Field Objects and Controls

= ASORT (staflds, 2) Sort records.

DEFI WIND list FROM 7,32 TO 14,52 I\K:NE| Define and activate window

ACTT WIND list

for list.

IF NOT EMPTY (State)

ENDIE.

m.choice = ASUBSCRIPT (staflds,ASCAN (staflds, State,1),1)

@ 0,0

State stored in field is selected in list.

GET mchoice ;
FROM staflds ;
PICTURE '@Q&T’ ;
RANGE 2 ;

SIZE 7,20 ; —————— Define and activate list.
DEFAULT 1 ;
COLOR SCHEME: 1

RELE WIND list Release window for list.

USE

SELECT (m.savearea)

Store chosen state to

REPLACE state WITH staflds[m.choice,1] [~ database.

SHOW GET state

IF m.lastkey=5 OR m.lastkey=19 OR m.lastkey=15
*

ELSE

ENDTF

* Provide a way to move between the dbjects with the keyboard.

*

_CUROBJ = OBJNUM (m.city)
| Allow user to

) use keyboard to
OBJNUM (m. zip) move between
objects.

_CUROBJ

1}

Screens

D2-59

Field Objects and Controls

%@ ... GET/EDIT VALID Clause Example 1

This example is taken from CLIENTS.SCX, a screen called from the
Client Manager module of the ORGANIZER application. The VALID
clause is defined for the Company GET field and is used to compare
values and enable the Save push button. The SHOWSAVE() func-
tion is located in the cleanup code for the screen.

— Client Manager -

Company: | TN || a1ance: z1ze.10 |

1 Contact: SRS Notes:
Address: EEFEGEEEISS TN e {V]-]
Fairmont ALV 26554 CTRL+TAB to exit
Area—Phone: ElE-E¥agRiilrg EXT: P33y Cuisine
Preference: ‘ Japanese u
Client Type: <-> Active < > InactiveC > Prospect

< Help > < Neu > < Save > < Cancel > <Balance>

[~k Next > < Prior > < Top > < Bottom > < Locate > « OK » I

Client List Account Details
Company Trans_type| Trans_date|Ant Service

Aspen Planning & Inc. Billing 21-/82/91 622. 82| Memo
American Forum Expense 081706791 125.97| Memo

CLIENTS.SCX

IF m.canpary < > clients.campary
= showsave()
ENDIF

D2-60 Screens

Field Objects and Controls

%@ ... GET/EDIT VALID Clause Example 2

This example is taken from ADDUSERS.SCX, a screen called when
you choose the Edit Users push button in CREDIT.SCX, a screen
used in the Credit Cards module of the ORGANIZER application. In
this example, the VALID clause is defined for the Last GET field
and is used to check for data in the field and to enable the First
GET field.

Selection list: Authorized users:

Jon Jeager < Move » >
Ardeu Schuartz

Geoffrey Schuartz
Nadine Schuartz

Bonnie Schuartz < + Remove >
Geoffrey Schuartz
Nadine Schuartz < Remove All >
Pat Schuartz Last: < Help >
< Neu name > il |
First:
« OK » | |
ADDUSERS.SCX
IF EMPTY (m.userlast) If the field is empty, do not let
RETURN .F. ——— the user exit until the user enters
ENDIF data or presses Escape.
SHOW GET m.userfirst ENABLE | Epable and select the first
_CUROBJ = OBINWM (m.userfirst) GET field.

Screens D2-61

Field Objects and Controls

/@ ... GET/EDIT ERROR Clause Example

This example is taken from ADDUSERS.SCX, a screen called when
you choose the Edit Users push button in CREDIT.SCX, a screen
used in the Credit Cards module of the ORGANIZER application. In
this example, the ERROR clause is defined for the Last GET field
and is used to display a message if the user tries to tab to another
field without entering a last name.

Selection list: Authorized users:

Jon Jeager < Move » >
Ardeu Schuartz

Geoffrey Schuartz
Nadine Schuartz

Bonnie Schuartz < ¢ Remove >

Geoffrey Schuartz

Nadine Schuartz < Remove All >

Pat Schuartz Last: < Help >
< Neu name > ||]

irst?
« 0K » | B
ADDUSERS.SCX

“Blank entries are not allowed”

D2-62 Screens

Field Objects and Controls

%@ ... SAY Refresh Example

This example is taken from CREDIT.SCX, a screen called from the
Credit Cards module of the ORGANIZER application. The SHOW
routine is defined for the Balance SAY field and is used to refresh
the field when the record changes.

Credit Card Manager

Number: DELETED
1d: DC1 ?7851-7479-7374-4507 Diner’s Club n

IS W VHlll ast Federal Savings
Phone: Interest Limit

Annual Fee: . Purchase: ZJEN[$5000. 80
Expires: Cash Advu: PN $800. 00

Due Date: Notes:

Authorized Users:

»Geoffrey Schuartz
Nadine Schuartz

CTRL+TAB to exit

Balance: $-218.39

< Edit Users > < Balance >

|| < Help > < Neu > < Save > <Cancel> <Vieu Charges>

CREDIT.SCX

PRIVATE currwind
STORE WOUTPUT () TO currwind

*

* Show Code from screen: CREDIT
*

#REGION 1

PRIVATE m.1i

Make this variable PRIVATE
and then initialize it.

IF SYS(2016) = “CREDIT” OR SYS(2016) = #*#
ACTTVATE WINDOW credit SAME
@ 1,24 SAY ITF(DELETED(), "DELETED", SPACE(7))
SIZE 1,9

’

ENDIF

Generated SHOW routine.

Screens D2-63

Field Objects and Controls

D2-64

Other Options

Range

Comment...

Disabled

Scroll Bar

Allow Tabs

Length...

The RANGE clause allows you to specify an upper and
lower bound for data in a GET field.

You may assign comments to any object in the Screen
Builder. These comments are for reference purposes
only and do not affect the generated output in any
way.

This option is available for GET and EDIT fields. If
this option is checked, you will be unable to access the
field upon generation. Data will be displayed, but the
cursor will skip the field and editing of the field is
prohibited. Code snippets for other objects in the
screen can contain commands to enable these objects.

This option is available for EDIT fields only. It is not
available for GET and SAY fields. This option places a
scroll bar on the right side of all editing regions that
are at least two lines deep. After generation, if data
for the field is greater than the display area, the scroll
bar allows the user to scroll up and down to view and
edit all the data in the field.

This option is available for EDIT fields only. It is not
available for GET and SAY fields. Allow Tabs allows
the user to Tab in the EDIT field. To exit the field in
the generated screen, the user must press Ctrl+Tab.

This option is available for EDIT fields only. A dialog

appears allowing you to specify the maximum number
of characters the user can enter in the EDIT field.

Screens

Field Objects and Controls

Push Buttons

Push buttons allow you to get information from the user that typi-
cally initiates an action. The user chooses the desired button to
perform an action described by the button’s prompt.

Choose Push Button... on the Screen menu popup to bring for-
ward the Push Button dialog.

Push Button Prompts: (<> Horizontal C > Uertical
[1 Terminating <Spacing...>
Variable:
< Choose...)l, 1
Options:
[1 When... [1 Comment...
[1 Valid... [1 Disabled

[1 Message...

« OK » < Cancel >

Push Button Dialog

Push buttons can be used to invoke another screen or a dialog.
You can give the user a visual clue that a push button will bring

forward a dialog by placing an ellipsis (...) in the push button
prompt.

Screens D2-65

Field Objects and Controls

D2-66

Group vs. Individual Push Buttons

Push buttons can be defined individually or in groups. Push but-
tons that perform similar actions (Top, Bottom, Prior, Next) should
be defined in a group. A DO CASE statement in the VALID clause
can determine which button was selected and take the appropriate
action.

Push buttons which perform actions that are not related to any
other push buttons should be defined individually.

Terminating vs. Non-Terminating Push Buttons

Push buttons perform actions within a READ and are, by default,
non-terminating buttons. When a button is non-terminating, all
controls remain active and you can make further selections and
enter additional data in the generated screen.

Terminating push buttons execute the VALID (if one is defined),
exit the READ and execute the next line in the controlling program.

Default and Escape Push Buttons

Special characters allow you to define default and escape push but-
tons. For information on defining default and escape push
buttons, see the Screen Builder chapter in the FoxPro User’s Guide
or the @ ... GET — Push Buttons command in the FoxPro
Language Reference.

Screens

Field Objects and Controls

Push Button VALID Clause Example 1

Screens

This example of an individual push button is taken from
FAMILY.SCX, a screen called in the Family & Friends module of the
ORGANIZER application. The VALID clause is defined for the Help
push button and is used to bring forward a Help window for the
Family & Friends module.

Family/Friends Manager

Last Name: First Name: Initial:
Gossnergan Ml < telp >

Spouse: (Y Birth: [RECEYE
Phone Number: EUERIEEINHS < New >

Notes: < Save >
[X1 Send Holiday Cards
[1 Special Diet Needs
[1 Exchange Gifts < Cancel >

CTRL+TAB to exit

FAMILY.SCX

HELP CHR(254) Family / Friends

D2-67

Field Objects and Controls

Push Button VALID Clause Example 2

This example of group push buttons is taken from CONTROL1.SCX,
a utility screen used throughout the ORGANIZER application. The
VALID clause is used to enable and disable push buttons depending
on the position of the record pointer in the database.

< Next > < Prior > < Top

> < Bottom > < Locate > «

OK »

CONTROL1.SCX

DO CASE

CASE m.choice = “Next”
SKIP 1
IF RECNO() = m.bottomrec
SHOW GET m.choice, 1 DISABLE
SHOW GET m.choice, 4 DISABLE
ELSE
IF RECNO() > m.toprec

Executes when the user
chooses the Next push but-
L — ton. Moves record pointer
down one record in the
database and enables/dis-
ables buttons.

SHOW GET m.choice, 2 ENABLE
SHOW GET m.choice, 3 ENABLE

ENDIF
ENDIF

CASE m.choice = “Prior”
SKIP -1
IF RECNO() = m.toprec
SHOW GET m.choice, 2 DISABLE
SHOW GET m.choice, 3 DISABLE
FLSE
IF RECNO() < m.bottomrec

Executes when the user
chooses the Prior push but-
L ton. Moves record pointer
up one record in the
database and enables/dis-
ables buttons.

SHOW GET m.choice, 1 ENABLE
SHOW GET m.choice, 4 ENABLE

ENDIF
ENDIF.

CASE m.choice = “Top”
GO TOP
SHON GET m.choice,
SHOW GET m.choice,
SHOW GET m.choice,
SHOW GET m.choice,

1 ENABLE
2 DISABLE
3 DISABLE
4 ENABLE

D2-68

Executes when the user
chooses the Top push but-
L— ton. Moves record pointer
to the top record in the
database and enables/dis-

ables buttons.

Screens

Field Objects and Controls

CASE m.choice = “Bottam”

GO BOTTOM Executes when the user
SHOW GET m.choice, 1 DISABRLE chooses the Bottom push but-
SHOW GET m.choice, 2 FNARIE [ton. Moves record pointer to

. the bottom record in the
SHOW GET m.choice, 3 ENABLE database and enables/disables

SHOW GET m.choice, 4 DISABLE buttons.

CASE m.choice = “Locate”

* Calls BROWSER.SPR.
* ; B BROWSER.SPR is a utility
% Browser 1s another utility screen screen used throughout the

ORGANIZER application.
DO browser . spr

CASE m.choice = “OK” =

m.idlequit = .T. Stores .T. to variables and
m.quitting = .T. terminates READ at the
CLEAR READ current level.

ENDCASE

SHOW GETS Executes SHOW routine.

Variables for push buttons can be of character or numeric
type. In this example, the variable m.choice is defined as a
character variable in the setup code for the screen. This al-
lows you to rearrange the push buttons in the screen
without modifying the code snippet.

This technique can also be used for radio buttons and
popups.

Screens D2-69

Field Objects and Controls

D2-70

Push Button WHEN Clause Example

This example is taken from RESTAURS.SCX, a screen called in the
Restaurants module of the ORGANIZER application. The Res-
taurant module is a multi-user application. In a network environ-
ment, choosing Edit push button locks the record and the Edit but-
ton changes to Save. Choosing the Save or Cancel push button
unlocks the record.

The Edit push button is disabled when FoxPro is not being used on
a network. You can edit fields directly. The WHEN clause is
defined for the Edit push button and is used to display a message
if the user chooses the Save push button without entering a res-
taurant name.

Restaurant Manager

Restaurant: [GEIgRSTEISS
Speciality: |PUEIAETTN

NGINCIT XS 171 Dorcas Way < Help >
Cuisine:
< Neuw >
Surf & Tur" 11 || $50-100 II
l < Edit)|
Maitre’d: Phone:
< Cancel >
Notes:
[1 Reservations
[X]1 Credit Cards Order:
[1 Valet Parking
[X1 Handicap Access Recordit ﬂ
CTRL+TAB to exit [X]1 Casual Attire
RESTAURS.SCX
IF NOT (m.adding OR m.editing) | Disable the button if not adding or
RETURN .T. editing a record.
ENDIF See if the Restaurant
IF EMPTY (restaurant) field is empty.
?? CHR(7)

WAIT WINDOWN “Enter restaurant name” NOWAIT
_CURORJ = OBJNUM (restaurant)
RETURN .F.

ENDIF Display a message and ring
the bell if the user chooses

the Save push button
without entering a res-
taurant name.

Screens

Field Objects and Controls

Radio Buttons

Radio buttons allow the user to choose from a list of mutually ex-
clusive options.

Choose Radio Button... on the Screen menu popup to bring for-
ward the Radio button dialog.

Radio Button Prompts:

| C > Horizontal (<) Uertical I

Variable:
[Comoose > |
Options:
[1 Uhen... [1 Comment...
[1 Valid... [1 Disabled
[1 Message...

Initial: « OK » < Cancel >

Radio Button Dialog

Radio buttons always occur in groups and only one radio button in
the group can be selected at any given time. A check box should be
used to represent single item options.

Screens D2-71

Field Objects and Controls

Radio Button VALID Clause Example 1

This example is taken from TRANS.SCX, a screen called in the
Transactions module of the ORGANIZER application. The VALID
clause is used to enable and disable controls in the screen cor-
responding to the radio button selected.

() Credit Cards

Transaction: Billing “
() Accounts

Harduare and Softuware Analysis

Credit card: Card I1d: [X]1 Client
n H PC Softuare Master ﬂ
Account.:
“ Date: [JRL:IEgll
Amount : 29.19
[1 Cleared check Check:
[1 Deductible

[X]1 Taxable

< Help > < Neu > < Save > < Cancel > < Goto >

TRANS.SCX

DO CASE
CASE m.decider = 1
SHOW GET m.cards ENABLE

SHOW GET m.card _id ENABLE Enable/disable controls
SHOW GET m.accnt DISABLE when the Credit Cards radio
SHOW GET m.cleared DISABLE button is selected.

SHOW GET m.check_no DISABLE
CASE m.decider = 2
SHOW GET m.cards DISABLE

D2-72

SHOW GET m.card id DISABLE
SHOW GET m.accnt ENABLE
SHON GET m.cleared ENABLE

Enable/disable controls
when the Accounts radio
button is selected.

IF NOT (m.trans_type = “Fee” OR m.trans type = “Interest”)
SHOW GET m.check no ENABLE

ENDIF

ENDCASE
IF NOT m.adding
= showsave()

ENDIF

Enable the Save push button.

Screens

Field

Radio Button VALID Clause Example 2

Objects and Controls

Screens

This example is taken from CONVERT.SCX, a screen called in the
Conversions module of the ORGANIZER application. The VALID
clause is used to fill the arrays for the From and To popups. The

options in the popups correspond to the radio

Conversions
Area
Length
Mass
Speed
Temperature
Time
Uolume

button selected.

To:

31,556, 925. 97

Seconds “

CONVERT.SCX

PRIVATE m.i, m.size

Make variables PRIVATE.

SELFECT DISTINCT units.unit ;
FROM units ;

WHERE units.type = m.unittype ; p———

ORDER BY units.type ;
INTO ARRAY fromarry

m.size = ALEN(fromarry)

DIMENSION toarry[m.size]

FOR m.i = 1 TO m.size
fromarry [m.i] = ALLTRIM(fromarry[m.i])
toarry[m.i] = fromarry[m.i]

Create, sort and fill using an
SQL SELECT statement.

Determine the length of array1
Create array2.

Copy elements from
array1 to array2.

Initialize variables for

FNDFOR

m. frompop = fromarry[1]
m.topop = toarry[l]
m. fromval = SPACE(19)
m.toval = SPACE(19)

popups and GET fields.

Make the From GET field

_CURORJ = OBINUM(m. fromval)
SHOWN GETS

the current object.
Execute SHOW routine.

D2-73

Field Objects and Controls

Initial Popup

The initial selection is used only for the creation of a variable. By
default, the variable is initialized to “1”, the number that cor-
responds to the first prompt.

If the variable is out of range, no button is selected in the
generated screen. Once a button is selected, there is no way to
display the buttons with no buttons selected unless the variable
value is changed and the GET is refreshed.

D2-74 Screens

Field Objects and Controls

Check Boxes

Screens

Check boxes act like toggle switches. They are used to indicate a
state that is one of two values, such as “on” or “off,” and are fre-
quently used to bring forward a dialog. Check boxes often appear
in small groups. Even though they appear as a group, each check
box is defined individually.

Choose Check Box... on the Screen menu popup to bring forward
the Check Box dialog.

Check Box Prompt:

Variable: « OK »
< Choose. .. >| || < cancel >

[1 When... [1 Comment...

[1 Valid... [1 Disabled

[1 Message... [1 Initially checked

Check Box Dialog

D2-75

Field Objects and Controls

Check Box VALID Clause Example 1

This example is taken from TRANS.SCX, a screen called in the
Money Manager module of the ORGANIZER application. The VALID
clause is defined for the Deductible check box and is used to com-
pare values and enable Save push button. The SHOWSAVE() func-
tion is defined in the cleanup code for the screen.

Money Transactions

Transaction: Billing “ C) Credit Cards
C+)> Accounts

Harduare and Softuare Analysis

Credit card: Card Id: [X] Client
ﬂ “ PC Softuare Master "
Account:
“ Date: [shRg:hiRgckl
Amount : 29.19
[1 Cleared check Check:
[1 Deductible

[X]1 Taxable

< Help > < Neu > < Save > < Cancel > < Goto >

TRANS.SCX
IF details.deductible < > m.deductible | Check to see if value has
= showsave () changed. If so, enable
ENDIF the Save push button.

D2-76 Screens

Field Objects and Controls

Check Box VALID Clause Example 2

This example is taken from REPORTS.SCX, a screen called when the
user chooses Reports... on the Reports menu popup in the OR-
GANIZER application. The VALID clause is defined for the For...
check box and is used to bring forward the Expression Builder.

— Report ————— Description
[1 Plain
cardlist .. Credit card info 1 [1 Summary
cardnums .. Emergency numbers [1 No Eject
< Help >

)P
) To File [|
) To Print [1 While...

(
¢
¢

« 0K » < Modify > < Cancel >

REPORTS.SCX
IF EMPTY (forexpr)

GETEXPR “Enter FOR expressfion:” TO forexpr TYPE ‘L’
o]

GETEXPR “Enter FOR expressfion:” TO forexpr TYPE ‘L’ DEFAULT
forexpr Display the Expression Builder so the user
ENDIF can enter a FOR expression.
m.for = ITF(EMPTY (forexpr), 0, 1) Check or uncheck the For...
SHON GET m. for check box.

Screens D2-77

Field Objects and Controls

Popups

Popups are used for setting values or choosing from a list of re-
lated items. A popup may be defined as either a list popup or an
array popup.

Choose Popup... on the Screen menu popup to bring forward the
Popup dialog.

(> List Popup C > Array Popup
l Variable:
I < Choose... >|
Options:
[1 When... [1 Comment...
[1 valid... [1 Disabled
[1 Message... [] 1ist Element...
[1 # Elements...
Initial: ;I « OK » < Cancel >

Popup Dialog

With an array popup, you DIMENSION the array in your setup code
(described earlier in this chapter). The elements in the array can
be defined in a variety of ways. For information on arrays, see the
Arrays chapter in this manual.

D2-78 Screens

Field Objects and Controls

Popup Example 1

Screens

In a list popup, you will define all the items that appear on the
popup. These items remain intact every time you use the

generated screen.

This example of a list popup is taken from RESTAURS.SCX, a screen
called in the Restaurants module of the ORGANIZER application.
The VALID clause is defined for the Order popup and is used to set

the index order of the database.

(> List Popup C) Array Popup

k3 Variable:
3
¢ [< choose. .. > IEEET— |
3
kS Options:

[1 When... [1 Comment...

[X1 Valid... [1 Disabled

[1 Message... [1 1ist Element...

[1 # Elements...

Initial: « OK » < Cancel >

Popup Dialog

Speciality: UENEEEILTNT RNV I
LEE I HA40 Japanese Auenue

Cuisine: ing:
Seafood “ 1 “ $ 8-24 4“
Maitre’ d: Phone:
| Blc028314-3485
Notes:

[X] Reservations
[X] Credit Cards
[1 Valet Parking
[X]1 Handicap Access
[X] Casual Attire

CTRL+TAB to exit

RESTAURS.SCX

Restaurant Manager
Restaurant: [SBCEIECCILLL

<

<

<

<

Help >

Neuw >

Edit >

Cancel >

[=]

—

Record#t
Restaurant
Cuisine
Rating

D2-79

Field Objects and Controls

D2-80

DO CASE

CASE m.setorder = 1
IF NOT EMPTY (ORDER())
SET ORDER TO
GO TOP
ENDIF
CASE m.setorder = 2
IF LONER (ORDER()) <> “restaurant”
SET' ORDER TO TAG restaurant
GO TOP
ENDIF
CASE m.setorder = 3
IF LOWER (ORDER()) <> “cuisine”
SET ORDER TO TAG cuisine
GO TOP
ENDIF
CASE m.setorder = 4
IF LOWER (ORDER()) <> “rating”
SET ORDER TO TAG rating
GO TOP
ENDIF
CASE m.setorder = 5
TF LOWER (ORDER()) <> “cost”
SET ORDER TO TAG cost
GO TOP
ENDIF

Set the index order
corresponding to
the option chosen
and then position
the pointer at the
top of the file.

ENDCASE

SHOW GETS

Execute SHOW routine.

Screens

Field Objects and Controls

Popup Example 2

This example is taken from RESTAURS.SCX, a screen called in the
Restaurants module of the ORGANIZER application. The VALID
clause is defined for the Cuisine popup and is used to enable a GET
field allowing the user to enter a new choice. The VALID clause for
the Cuisine GET field inserts the new value in the array for the

popup.
Restaurant: AEISENTEVE
Speciality: |FRETEEGETNI
GLIVSIT XIS 171 Dorcas Uay < Help >
Cuisine:
< Neu >
Other... " II || $50-100 “
I l < Edit >
Maitre’d: Phone:
Bo3R310-7002 < cance1 > | |
Notes:
[1 Reservations
[X] Credit Cards Order:
[1 Valet Parking
[X] Handicap Access Recordtt ﬂ
CTRL+TAB to exit [X]1 Casual Attire
RESTAURS.SCX
IF m.cuisine = “Other...”
popupedit = .T. Enable the GET field when
SHOW GET m.newcuis FNARLE the Other... option is chosen

on the Cuisine popup. The
GET field is the current
object.

_CURORJ = OBJNUM (m.newcuis)
ENDIF

Screens D2-81

Field Objects and Controls

Popup Example 3

This example is taken from CONVERT.SCX, a screen called in the
Conversion module of the ORGANIZER application. In this example,
the SELECT statement is defined in the setup code for the screen.

Conversions
Area
Length
Mass
Speed
Temperature
Time
Uolume
To:

Seconds H

CONVERT.SCX

Setup Code

#SECTION 2 Generator directive.
SET UDFPARMS TO REFERENCE «——— Pass parameters by reference.
PUSH MENU _MSYSMENU = «—————————— Push the menu system onto the

stack.
5 DIST . Ul’i_‘LtS.Ul’]J.t i Create and fill an array
FRQM umts ; =~ — using a SQL SELECT
WHERE ALLTRIM(units.type) = “Area” ; statement.
INTO ARRAY framarry
= ASORT (fromarry) Sort the array.
m.size = ALEN(fromarry) Store the length of the array
to a variable.

DIMENSION toarry [m.size]

D2-82 Screens

VALID Clause

Screens

IF EMPTY (m. fromval)

_CUROBT = OBINWM (m. framval) |

SHOWN GET m. fromval
RETURN .F.

ENDIF

Field Objects and Controls

Force the user to enter a
value in the From GET field.

Execute UDF CONVRT().

= convrt (m.framval, m.toval, “left”) «~——— CONVRT() is defined in

the cleanup code for the
screen.

D2-83

Field Objects and Controls

Lists

D2-84

Lists are used to display multiple items from which the user may
choose an item. If the list contains more items than what will fit
in the defined size of the list, a scroll bar appears on the right of
the list enabling the user can scroll through a many options.

Choose List... on the Screen menu popup to bring forward the List
dialog. '

List Type: Options:
(+> From Array [::::::::::::] [1 When [1 Comment...
C D> From Popup [1 Valid [1 Disabled
C) Prompt Structure [1 Message... [1 1ist Element..
C > Prompt Field [1 Terminating [1 # Elements...
C > Prompt Files

Variable:

r< Choose... > [———_:” « 0K » < Cancel >

List Dialog

Items that are displayed in a list may come from an array, a
popup, the structure of a database, the records in a specific field in
a database or specific files on a disk.

Screens

List Example 1

Field Objects and Controls

Screens

This example is taken from CREDIT.SCX, a screen called in the
Credit Cards module of the ORGANIZER application. The 1st Ele-
ment and #Elements are defined for the Authorized Users list and
are used to specify the column in the array to be displayed in the
list and to prevent the display of blank records in the list.

List Type: Options:
C(+> From Array [1 Uhen... [1 Comment...
C) From Popup [1 Valid... [1 Disabled
C > Prompt Structure [1 Message... [X] 1ist Element...
C > Prompt Field [1 Terminating [X] # Elements...
C > Prompt Files

Variable:
< Choose... > « 0K » < Cancel >

List Dialog

Credit Card Manager

»Geoffrey

Number:

1d: DC1 7851-7479-7374-4587 Diner’s Club "

Issued By: [EEXSMEY-TITEYERN-TET S

| (Y1800 -0867-8627 Interest Limit
Annual Fee: Purchase: ZjENG[$5000. 80
Expires: Cash Adv: ZFN $808. 00,
Due Date: Notes:
uthorized Users

Nadine Schuartz

<EdttUsers—>—— < Balance >

CTRL+TAB to exit

Schuartz

Balance: $-218.39

|[< Help > < Neu > < Save > <Cancel> <Uieu Charges>

CREDIT.SCX

D2-85

Field Objects and Controls

#Elements

PRIVATE m.cnt, m.limit Make variables PRIVATE.
m.cnt = 1 Initialize a variable.
m.limit = ALEN(users,1) Store the number of rows
DO WHILE m.cnt <= m.limit to a variable.

IF EMPTY (users([m.cnt,1])

ENDIF m.cnt-1 Prevent the display of blank

records in list.

m.cnt = m.cnt + 1
ENDDO
RETURN m.cnt-1

1st Element

3 Display the third

column in array.

D2-86 Screens

Field Objects and Controls

List Example 2

This example is taken from ADDUSERS.SCX, a screen called when
you choose the Edit Users push button in CREDIT.SCX, a screen
used in the Credit Cards module of the ORGANIZER application.

In this example, the VALID clauses are used to move items between
two lists.

Authorized users:

Jon Jeager CQ TR A P Geof frey Schuartz
Ardeu Schuartz Nadine Schuartz
Bonnie Schuartz < ¢ Remove >
Geoffrey Schuartz
Nadine Schuartz < Remove All >
Pat Schuartz Last: < Help >
< Neu nave > |]
First:
« OK » |]
ADDUSERS.SCX

Selection List VALID

Screens

IF alreadyin(allusers[m.alluser,3])

. . . Compare the selection list
WAIT WINDOW “Duplicate entry” NOWAIT | i 'the Authorized users

RETURN .F. list to prevent duplication.
ENDIF
IF m.usrcnt+l > ALEN(users, 1)

DIMENSION users[m.usrcnt+1,3] Add a row to the array
ENDIF (if necessary).

users [m.usrcnt+1,1] = allusers([m.alluser,1]

users [m.usrcnt+1,2] = allusers[m.alluser, 2] Copy a selected name to
the Authorized users list.

I

users [m.usrcnt+1,3] = allusers[m.alluser, 3]
m.usrcnt = m.usrant + 1 Increment the array row
m.user = m.usrcnt counter.

SHOW GET m.mover, 2 ENABLE
IF m.usrcnt > 1

SHOW GET m.mover, 3 ENABLE
ENDIF

SHOW GET m.user Display the Authorized
users list.

Enable the controls.

D2-87

Field Objects and Controls

Authorized Users VALID

D2-88

Remove a row from the array.

= ADEL (users, m.user)

m.usrcnt = m.usrcnt - 1
m.user = m.usrcnt

IF m.usrcnt = 0
SHOW GET m.mover, 2 DISABLE
SHOW GET m.mover, 3 DISABRLE
ENDIF

SHOW GET m.user

Decrement the array row
counter.

Disable the controls.

Display the Authorized
users list.

Screens

Coordinating Browse with Screens

Coordinating Browse with Screens

Screens

When a Browse window is displayed with a READ window, the user
can activate the Browse window and select a record. The related
information in that record can then be displayed in the screen.
You can display multiple Browse windows allowing the user to
view information from related databases.

The Client Manager module of the ORGANIZER application uses
Browse windows to display company names for all records in one
Browse window, and transaction information for the current record
in another Browse window.

———— Client Manager —

Company: [Batance: z180.10 |

Notes:

Contact:

Dorit Springer
J Address:
1

8328 Recsize Drive
Fairmont CTRL+TAB to exit

Area—Phone: ELEFEPRERt{:r : Cuisine

Client Type: <> Active < > Inactived > Prospect

< Neu > < Save > < Cancel > <Balance>

< Help >

< Next > < Prior > < Top > < Bottom > < Locate > <« OK >

Client List Account Details
Trans_type] Trans_date| Ant

Aspen Planning & Inc. Billing a1-/682/91 622.082| Memo
American Forum Expense 817867391 125.97| Memo

Browse Windows

This section describes how these Browse windows are defined and
activated, and offers tips on using Browse with screens.

D2-89

Coordinating Browse with Screens

Activating Browse Windows

To combine a Browse window with a READ window, place the com-
mands to define the Browse window in the setup code for the
screen. The following commands appear in the setup code for
CLIENTS.SCX:

IF NOT WVISIBLE (“Client List”)
BROWSE NORMAL NOWAIT NODELETE LAST TITLE “Client List” ;
NOAPPEND NOMENU FIEIDS conpartyy ;
WHEN showgets ()
ENDIF
IF NOT WVISIBLE (“Account Details”)
SELFECT details
BROWSE NORMAL NOWATT NODELETE LAST TITLE “Account Details” ;
NOAPPEND NOEDIT NOMENU ;
FIELDS ;
Trans_type:10, ;
Trans date:10, ;
Amt:7, Service
SELECT clients
ENDIF

The Browse windows are allowed to interact with the READ win-
dows by including the <window title> in an Associated Window
list. The Associated Window list is part of the WITH clause for the
READ command. The list is defined with the Associated Windows
option in the Generate Screen dialog.

- Screens - Code Options
[X] Open Files
$»CLIENTS < Edit > [X]1 Close Files
$ CONTROL1 [X]1 Define Windous
3 < Add > [X] Release Windous
3 [X1 READ CYCLE
3 < Remove > [1 Multiple READs
3 [1 READ NOLOCK
3 < Arrange > [X1 Modal
[1 Assoc. Windous...
- Screen Set Name —| Associated Windous
< Output File...
3 <« OK »
3
« OK 3 < Clear >
' Client List’
El’ Account Details’ < Cancel >

Generate Screen Dialog

D2-90 Screens

Coordinating Browse with Screens

Defining an Associated Window list makes the screen set MODAL
and only the windows in the screen set and windows specified in
the Associated Window list can be activated. When you define an
Associated Window list, the following command is generated in the
.SPR program:

READ CYCLE MODAL ;
WHEN _px80shzon() ;
ACTIVATE _px80shzot () ;
DEACTIVATE _px80shzoz () ;
SHON _px80shzp4 () ;
WITH calculator, calendar, puzzle, ‘Client List’, ;
'Account Details’, Details

The windows in the Associated Window list can be activated before
the screen is executed or they can be activated with menu options.
Activating windows with menu options is described later in this
chapter and in the chapter titled Menus in this manual.

Sizing and Positioning Browse Windows

Screens

The first time you run an application that combines a Browse win-
dow with a screen, the Browse window opens at the default size
and position on the monitor.

You can save the size and position of Browse windows by specify-
ing a resource file for the application and including that resource
file in the project. ORGUSER is a resource file created for the
Client Manager Application.

The size and position of the Browse windows were saved in this
resource file outside of the ORGANIZER application. During
development, we set the resource file to ORGUSER and arranged all
the windows. These coordinates were saved in the ORGUSER
resource file when we exited FoxPro.

The ORGUSER resource file was then included in the CLIENTS
project and the following commands were defined in the setup code
for CLIENTS.SCX:

m.resoset SET (“RESOURCE”)
m.oldreso SET (“RESOURCE”, 1)
SET RESO TO ORGUSER

D2-91

Coordinating Browse with Screens

When you include a database in a project, the database is auto-
matically read-only. When the user runs the Client Manager
module of the ORGANIZER application, they can move and size the
Browse windows, but these new coordinates will not be saved in
the resource file. Every time the application is executed, the win-
dows will open at the size and position saved in the resource file.

Commands in the cleanup code for CLIENTS.SCX call a procedure in
UTILITY.PRG that restores the resource file. This procedure in-
cludes the following commands: ‘

IF NOT EMPTY (m.oldreso)

SET RESO TO LOCFILE (m.oldreso, “DRF”, ;

“Where is “+m.oldreso+" resource file?")

ENDIF
IF m.hidecom

SHOW WINDOW “Cormand”
ENDIF
IF m.resoset = “OFF”

SET RESOURCE OFF
ENDIF

Activating Menus During a Modal READ

D2-92

When a modal READ is issued, your menu system is disabled. A
modal READ is a READ that includes the MODAL keyword or a WITH
<window title list> clause. However, your menu can be reactivated
and accessible during the READ by defining a READ WHEN clause.

To make your menu available during a modal READ, execute
your menu program in the READ WHEN clause.

The following code is defined in the WHEN clause for the
CLIENTS.SCX:

DO mairmenu.mpr

Screens

Debugging Screen Code in an Application

Debugging Screen Code in an Application

Screens

When you run a screen program in the Trace window, what you
see is the generated code as it is executed. In order to debug
generated code, you must make sure the Save Generated Code
check box is checked in the Project Options dialog. Options in this
dialog allow you to specify where the generated program is saved.
For information on the Project Options dialog, see the Project
Manager chapter in the FoxPro User’s Guide.

If you receive errors while running a generated program, suspend
or cancel the program and note the location in the generated pro-
gram where the error occurred. Return to the screen that
generated the error and make your changes in the appropriate
code snippet.

Generated programs (generated by GENSCRN) are extremely well
documented. All code snippets are labeled with their unique name
(provided by the generator), the screen, the READ or object level
clause and the object type with which the code snippet is as-
sociated.

xxxxx dkhkhkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhhkhkhkkhhkhkkdhkhkhhkhkhhkhhkkkhkxk

* Khkkhkhkhkhkhkhkhhkhkhkhkhkkkkkhkkkhkhkkhhkkhkkhkhkkhkkhkkkhkhhxkx %%k Kk Kk ok ok ok ok ok ok ok ke ko
* * _PX800J5D3 m. frampop VALID *
* * *
* * Function Origin: *
* * *
* * From Screen: CONVERT, Record Nurer : 9 *
* * Variable: m. frampop *
* * Called By: VALID Clause *
* * Object Type: Popup *
* * Snippet Number: 1 *
*

*

FUNCTION _px80075d3 && m.framwop VALID
#REGION 1
IF EMPTY (m. framval)
_CUROBJ = OBINWM (m. framval)
SHOW GET m. framval
RETURN .F.
ENDIF
= convrt (m.frawal, m.toval, “left”)

D2-93

Debugging Screen Code in an Application

W

D2-94

Never make your changes in the generated code. Your
screen is the source for the application.

If you make changes in the generated code, when the screen is
regenerated or a project that includes the screen is rebuilt, all
changes made to the generated program are overwritten by new
code.

Generated names change every time you regenerate a screen and
should never be referenced in a program.

Your screen is the source for the application. Generated code is an
intermediate step and should be used for debugging purposes only.
Generated code should never be edited. Make all changes with the
Screen Builder.

Screens

Using FoxDoc with Screen Programs

UsianoxDoc with Screen Programs

Screens

FoxDoc is an automatic application documenter for FoxPro
programs. With FoxDoc, documenting an application becomes a
simple matter of entering some basic information and pressing a
few keys.

Even though generated programs are extremely well documented
(with function origin comments), FoxDoc can make them even bet-
ter. FoxDoc will perform the following documentation tasks on a
generated program:

® (Cross-reference variables.

® Identify all files used in program.

® Construct tree diagram of generated program.

® Include generated program in system-wide statistics.

Also, when FoxDoc documents snippets in a generated screen or
menu program, the snippet is described with the variable name
with which it is associated.

For information on using FoxDoc, see the chapter titled Document-
ing Applications with FoxDoc in this manual.

D2-95

3 Menus
e

Menus

The Menu Builder is a tool for creating menus. In the Menu
Builder’s Menu Design window, you create the menu pads that ap-
pear across the top of your screen and the menu popups that ap-
pear below the menu pads.

The Menu Builder eliminates the most tedious step in creating
menus — writing the menu program code. After you design your
menu, FoxPro generates the corresponding menu program code for
you. Then you can use the Project Manager to integrate the menu
program into an executable FoxPro application.

This chapter illustrates some of the menu program code created by
the Menu Builder and describes some of the circumstances in
which you might want to write your own code. To understand
what you read in the chapter, you should understand the FoxPro
interface and the Menu Builder. If you aren’t familiar with these,
consult the Interface Basics and Menu Builder chapters in the
FoxPro User’s Guide.

The menus illustrated in this chapter are from the ORGANIZER
sample application included with FoxPro. The menu files are
CONVMENU.MNX, ORGANIZE.MNX and MAINMENU.MNX, which are in
the MENUS subdirectory of the SAMPLE directory. In the Menu De-
sign window you can open and examine these menu files and gen-
erate and modify their menu program code.

D3-1

Advantages of the Menu Builder

Advantages of the Menu Builder

Organization and Clarity

The Menu Builder unifies menu definition code and menu proce-
dures. When you create a menu with the Menu Builder, the proce-
dures that FoxPro executes when you choose a menu option are
integrated into the menu definition code.

Increased Productivity

Designing a menu interactively with the Menu Builder is much
faster than writing a program to create the same menu.

Without leaving the Menu Design window, you can test the ap-
pearance and operation of a menu you’re designing by choosing the
Try It option. If you're not satisfied with the menu, you can con-
tinue modifying it.

After you design your menu, FoxPro can generate the correspond-
ing menu program code for you.

FoxPro System Menu Bar

The Menu Builder uses the FoxPro system menu bar, which has
the following advantages:

¢ FoxPro automatically activates and deactivates the system
menu bar in your application as necessary. Whenever your
application waits for keyboard input, such as during a READ
operation, the system menu bar is activated.

® You can include options from FoxPro menu popups on your
popups, and these options are automatically enabled and
disabled as needed.

® You don’t have to explicitly activate your menu using the
ACTIVATE MENU command.

D3-2 Menus

Menu Terms Used in This Chapter

Menu Terms Used in This Chapter

A menu consists of the following parts: menu bar, menu pads,
menu popups and menu options.

System File Edit Database Record Program UWindou

About FoxPro...
Help... F1

S — Menu Option Menu Pad Menu Bar

Filer

Calculator
Calendar/Diary
Special Characters
ASCII Chart

Capture Submenus
Puzzle
Conversions l
Organize... »1| Restaurants
Client Manager
Money Manager » Credit Cards
Family & Friends Accounts
l Transactions
1 Menu Popups
Menu System Components
Menu Bar
The menu bar appears at the top of the screen and contains the
menu pads.
Menus created with the Menu Builder automatically use the
FoxPro system menu bar, _MSYSMENU.
Menu Pads

The names on the menu bar are menu pads. When you choose a
menu pad, a menu popup appears below the menu pad, or a proce-
dure or command executes.

With the Menu Builder, you create menu pads in the Menu Design
window.

Menus D3-3

Menu Terms Used in This Chapter

Menu Popups

Menu popups contain a set of related options. You can choose an
option from a menu popup to perform an action.

To create menu popups for a menu pad, choose the Submenu op-
tion from the Result popup in the Menu Design window.

Menu Options

A menu popup contains a set of related options. When you choose
an option from a menu popup, a procedure or command executes or
another menu popup, called a submenu, appears.

To create options for a menu popup, choose the Create push button
to the right of the Result popup. The Create push button appears
when you choose the Submenu option from the Result popup.

File Extensions

D3-4

Here are the file extensions used for FoxPro menu databases and
menu programs:

® MNX — menu database
® MNT — menu database memo file
¢ _MPR — menu program

® _MPX - compiled menu program

Menus

Creating Code Snippets

Creating Code Snippets

Menus

When you design a menu with the Menu Builder, you can create
code snippets that are assigned to menu pads, popups or options.
A code snippet is a procedure or expression associated with a spe-
cific menu pad, menu popup or menu option.

When a code snippet is only one line long, it is included with the
command that executes the snippet. Typically, this command is
ON SELECTION PAD or ON SELECTION BAR. The command and its
code snippet are part of the menu definition code.

If a code snippet is longer than one line, the snippet becomes a
separate procedure, with a unique name created by the menu code
generator. This procedure is placed at the end of the generated
menu program, and the command that executes the snippet calls it
by its generated name.

Never reference procedures by their generated names,
because the names change each time you regenerate a menu
program.

In the generated menu code, comment boxes precede procedures
and document the procedures. Comment boxes provide debugging
information and information for FoxDoc, the program documentor
included with FoxPro.

A comment box includes the following information:
® The procedure name
® The command that calls the procedure

® The number of the .MNX database record that contains the
procedure

® The menu pad or popup option prompt that calls the
procedure

® The number of the code snippet

D3-5

Creating Code Snippets

Comment
box.

D3-6

Following is the code snippet for the Clock option on the System
menu popup in the MAINMENU file. Because the code snippet is
longer than one line, the Menu Builder creates a procedure for it.
The procedure has the generated name _PVOOWTOVO, and the com-
ment box provides information about the procedure.

MAINMENU Clock Procedure
IF MRKBAR("environmen', BARO)
SET CLOCK OFF
SET MARK OF BAR BAR(D OF environmen TO .F.
ELSE

SET CLOCK ON
SET MARK OF BAR BAR(C> OF environmen TO .T.
ENDIF

*
Fhkkhkhkkhkkhkhkhhkhhhkhhkhhkhkhkhkhkhkhkhhkhkhhkhkhkhhhkhhhkkhkhkhhhkhkhkhhhhhhhkhhhkkxk

* hhkhkhkkhkhkhhhhkhhkhkhhkhkhkhkhhkhkhk kA khkh kA kA AR A A Ak hkhkkkkkkkhkhkhkhkkhhkkkkk
* * *
* * _PVOOWIOVO ON SELECTION BAR 1 OF POPUP envirormen *
* * *
* * Procedure Origin: *
* * *
* * From Meru: MATNMENU.MER, Record: 12 *
* * Called By: ON SELECTION BAR 1 OF POPUP envirormen *
* * Prampt: Clock *
* * Snippet: 1 *
* *
*

*

+—— Generated procedure name.

PROCEDURE _pv00Owtovo
IF MRKEAR ("envirormen",BAR())
SET CLOCK OFF ' | Multiple-line
SET MARK OF BAR BAR() OF envirommen TO .F. code snippet.
ELSE
SET CLOCK ON
SET MARK OF BAR BRAR() OF envirormen TO .T.
ENDIF
Menus

Calling a Menu Program

Calling a Menu Program

To call a menu program, issue a command with the following syn-
tax:

DO <meru name>.MPR

You must include the .MPR extension because other types of exe-
cutable files might have the same name.

Menus D3-7

Activating the Menu

Activating the Menu

Menus created with the Menu Builder automatically use the
FoxPro menu system. If you create a menu that uses the FoxPro
menu system, you don’t have to explicitly activate your menu
using ACTIVATE MENU.

READ and Menus

D3-8

The READ command activates controls in FoxPro screens. When a
READ command has activated a control, your menu might or might
not be accessible, depending upon the type of READ command is-
sued.

When you issue a modal READ command, your menu is disabled. A
modal READ command is a READ command that includes the
MODAL keyword or a WITH <window title list> clause. However,
you can reactivate your menu and enable it during a READ by in-
cluding a WHEN clause with the READ command.

When you issue a READ command, access to your menu also
depends on the SET SYSMENU command you use, as discussed in
the following section.

Menus

Activating the Menu

SET SYSMENU

Menus

SET SYSMENU is a powerful command for manipulating menus that
use the FoxPro menu system. Using SET SYSMENU, you can dis-
able your menus, add and remove items from menus, restore the
default FoxPro menus, and control access to your menus during
program execution. Here are some of the forms SET SYSMENU can
take:

® SET SYSMENU ON — The menu bar is enabled during program
execution of commands such as BROWSE, MODIFY MEMO, and
non-modal READ, while FoxPro waits for keyboard input. The
menu bar doesn’t appear, but you can display it by pressing
Alt or F10 or by double clicking the right mouse button.

® SET SYSMENU OFF — The menu bar isn't enabled during
program execution.

® SET SYSMENU AUTOMATIC — The menu bar appears at all
times during program execution and is enabled during
program execution while FoxPro waits for keyboard input.

® SET SYSMENU TO DEFAULT — The default FoxPro menu system
is restored.

For more information about SET SYSMENU, see the FoxPro
Language Reference.

D3-9

Activating the Menu

PUSH MENU and POP MENU

D3-10

The PUSH MENU and POP MENU commands help you save and re-
store menus. Using these commands, you can push a menu onto a
stack in memory and then restore it later by popping it off the
stack. :

Pushing a menu onto the stack saves the menu’s current state but
doesn’t remove the menu from the screen. While the menu is in
memory, you can change or replace the menu on the screen. After
changing or replacing the menu, you can restore the original menu
from the stack by issuing the command POP MENU.

Menus are pushed onto and popped off the stack in a “last in, first
out” order. The number of menus you save in memory is limited
only by the amount of memory available.

The ORGANIZER application illustrates how to replace and restore
menus. When you first run ORGANIZER, it replaces the FoxPro
System menu popup with its own. When you choose an option
from the ORGANIZER popup, a screen program runs. This screen
program pushes the current menu onto a stack in memory and
then replaces the displayed menu with a new one. When the
screen program exits, FoxPro restores the original ORGANIZER
menu from memory.

For example, the following commands in the CONVERT.SCX screen
program use the PUSH command to push the ORGANIZER menu
onto a stack in memory, replace the ORGANIZER menu with its own
menu and then restore the original ORGANIZER menu when the
screen program exits.

PUSH MENU _MSYSMENU <«—— Save the current menu to memory.

DO convmenu.mpr <«————— Display and activate the CONVMENU menu.

POP MENU _MSYSMENU <+—— Restore the previous menu from memory.

For more information about PUSH MENU and POP MENU, see the
FoxPro Language Reference.

Menus

Your Working Environment

Your Working Environment

The following sections include some suggestions for making menu
design faster and easier.

Using an Extended Video Mode

If your video hardware supports an extended display mode, use it.
If you design menus in an extended video mode, you can display
more than 25 screen lines simultaneously, inlcuding the Menu De-
sign window and several code snippet windows, making cutting
and pasting between code snippets windows easier.

Manipulating Code Snippet Windows

You can size, minimize and dock code snippet windows as you do
other FoxPro windows.

When you save your menu, you also save the state of the code
snippet windows. When you reopen the menu, the code snippet
windows look as they did when you last saved the menu.

Using Quick Menu

If your menu design includes the FoxPro system menus, you can
create the menu quickly and easily using the FoxPro Quick Menu
feature. To create a quick menu, choose the Quick Menu option
from the Menu menu popup. The Quick Menu option is available
only when the Menu Design window is empty (that is, when it
contains no menu pads, popups or options). For more information
about quick menus, refer to the Menu Builder chapter in the
FoxPro User’s Guide.

Restoring the Menu System and Command Window

Menus

When you are testing a menu that replaces the FoxPro menu sys-
tem, you might not be able to access the menu system and the
Command window. To restore access to the Command window and
the default FoxPro menu system, issue the following command be-
fore testing your menu:

ON KEY LABEL ALT+F9 SET SYSMENU TO DEFAULT

After issuing the command, simply press Alt+F9 to restore the de-
fault system menus and the Command window. You can specify
any valid key or key combination with the ON KEY LABEL com-
mand, not just Alt+F9.

D3-11

Your Working Environment

Design Considerations

Your application determines your menu design and options. The
following sections include suggestions for designing your menus so
they are user friendly.

Emulating the FoxPro Interface

If your application’s interface emulates the FoxPro interface, your
application will be instantly familiar to users who have experience
with this type of interface. For example, because the FoxBASE+
for the Macintosh™ interface is similar to the FoxPro interface, a
FoxBASE+ for the Macintosh user could quickly learn your applica-
tion if it looked like the FoxPro interface.

Executing Rarely Used Routines from Menus

D3-12

If you anticipate that a particular routine won’t be used often, de-
sign your menu so that the routine is executed through a menu
option instead of a control. Placing an option for an infrequently
executed routine on a menu reduces clutter on your screens.

Avoid assigning keyboard shortcuts to options associated with rou-
tines that make irreversible changes. Avoiding such shortcuts pre-
vents users from choosing the options accidentally.

Menus

Your Working Environment

Using FoxPro Menu Options

You can place most of the menu options available on FoxPro sys-
tem menus on your menus. When you include the name of a
FoxPro option on your menu, the option is available on your menu.

While using the Menu Builder, you can place a FoxPro menu op-
tion on your popup by choosing the Bar # option from the Result
popup and then typing the name of the FoxPro option in the text
box.

When your menu includes FoxPro menu options, FoxPro automati-
cally manages the enabling and disabling of the options. For ex-
ample, if you include the Paste option on your popup, Paste is
enabled only when the cursor is in a text editing region and the
clipboard is not empty.

The names of the FoxPro system menu options you can use are:

® Described in the topic Menu — Systems Menu Names of the
online help facility or the section Menu — Systems Menu
Names in the FoxPro Language Reference.

® Returned by the SYS(2013) function. SYS(2013) returns a
space-delimited character string containing the names of the
system menu bar, the menu pads on the system menu bar,
the system menu popups and the menu options.

Help F1
Calculator FoxPro System Menu Options —
Calendar/Diary
Puzzle
Conversions
Environment
OK Result Options
3 Bar 1t _MST_HELP I _MSYSTEM “
3 Bar i# _MST_
$ \<Calculator Bar i _MST_CALCU
$ Calendar/\<Diar Bar # _MST_DIARY < Try it >
$ Pu\{zzle Bar # _MST_PUZZL
$ Co\<nversions Command DO mhit IN MAIN
$ \<Environment Subvenu < Edit » Item
$ \- Command < Insert >
$ \<OK Command DO mexit IN MAI [X]
' < Delete >
A Menu Using Some FoxPro System Menu Options
Menus D3-13

Your Working Environment

Choosing Options from the Result Popup

D3-14

Using the Result popup in the Menu Design window, you can cre-
ate a submenu for a menu option, include a FoxPro system option
in your menu, or specify a command or procedure that you want to
execute when an option is chosen.

Command

Choose Command from the Result popup to specify a command
that you want to execute when an option is chosen. When you
enter a command to execute, FoxPro adds the following command
to the menu definition code:

ON SELECTION BAR <option nurmber> OF <menu name> <command>

Each option on a popup has a unique <option number>.

Choose Bar # from the Result popup to put a FoxPro system option
on your menu (see the example on the previous page).

Submenu

Choose Submenu from the Result popup to create a submenu that
appears when an option is chosen. When you create a hierarchical
popup, FoxPro adds the following command to the menu definition
code:

ON SELECTION BAR <option number> OF <menu name> ;
ACTIVATE POPUP <popup names

Procedure

Choose Proc. from the Result popup to create a procedure that
executes when an option is chosen. When you create the proce-
dure, FoxPro adds the following command to the menu definition
code:

ON SELECTTION BAR <option number> OF <menu names> ;
DO <procedure name> IN <menu names>

Menus

Your Working Environment

In the command syntax, <procedure name> is a unique name gen-
erated by the menu code generator, and <menu name> is the name
of the generated menu program.

Using Keyboard Shortcuts for Screen Controls

To help keyboard users, include menu options for controls that are
frequently used and create keyboard shortcuts for these options.

For example, the CONVERT.SCX screen has a set of radio buttons
for selecting the type of quantity being measured, such as area or
length. You can choose the appropriate radio button by pressing
the corresponding key combination shown on the Conversions
menu popup.

System File Edit Database Record Program Windouw Conversions

Area “E

Length “L

Mass S

Conversions Speed “D
Area Temperature "T

Length Time “1

Mass Uolume “M

Speed
Temperature
Time

Uolume

To:
Acres "

Keyboard Shortcuts for Screen Controls

Menus D3-15

About the Generated Program

About the Generated Program

D3-16

GENMENU, the FoxPro menu program generator, creates a menu
program from the information in the menu’s .MNX database. The
resulting program has an .MPR extension.

Menu program code consists of four parts which FoxPro generates
and executes in the following order:

1. Setup Code — Initializes variables used by the menu, saves the
current environment and creates an environment for the menu.
You create the code snippets placed in the setup code.

2. Menu Definition Code — Creates the menu pads, popups and
options. Menu definition code also includes commands, such as
ON SELECTION PAD and ON SELECTION BAR, that specify the pro-
cedure or command that executes when a menu pad or option is
chosen. The menu generator automatically creates the com-
mands in this code section.

3. Cleanup Code — Typically turns mark characters on or off and
enables or disables menu pads and options. You create the
code snippets placed in the cleanup code.

4. Procedures — These are code snippets you create that execute
when a menu pad or popup is chosen.

Menus

* Ok *

*

Menus

About the Generated Program

The following example contains sections from the generated code
for the MAINMENU menu in the ORGANIZER application. This ex-
ample illustrates how the generated code is organized.

Fhkkk *kk

*

12/08/92 MATNMENU.MPR 18:30:39

K*kkkhkkkhkhkkhkhkhkkhkkhkhkkkkkkkhkkk

*

*

*

Author’s Name

Copyright (c) 1992 Corpary Neme

Address
City, Zip
Description:

This program was autaratically generated by GENMENU.

*kkkk *kk * Kk Kk * * * %k kkk *k

Program Header.
FoxPro always
generates this
information.

D3-17

About the Generated Program

* *
* * Menu Definition
* *

*kkkokokx * Kok ke ok ok ok ok ok ok ko ok ok ok *

D3-18

*kkkkkk

SET SYSMENU TO <———————— Remove the FoxPro menu system.

SET SYSMENU AUTOMATIC <—— Always display the system menu bar.

DEFINE PAD _px913c77x OF _MSYSMENU PROMPT "\<System" ;

COLOR SCHEME 3

KEY ALT+S,

DEFINE PAD _px913c78u OF _MSYSMENU PROMPT

COLCOR SCHEME 3

KEY ALT+E,

DEFINE PAD _px913c79j OF _MSYSMENU PROMPT

COLOR SCHEME 3

KEY ALT+R,

DEFINE PAD _px913c7a8 OF _MSYSMENU PROMPT

COLOR SCHEME 3

KEY ALTHW,

DEFINE PAD _px913c7at OF _MSYSMENU PROMPT

COLOR SCHEME 3

KEY ALT+P,

n \<E‘(iit " ’,
"\<Record" ;
"\<Window" ;

nn

"Re\<ports" ;

Create the menu
—— pads on the system
menu bar.

ON PAD _px913c77x OF _MSYSMENU ACTIVATE POPUP _Insystem
ON PAD _px913c78u OF _MSYSMENU ACTIVATE POPUP _medit
ON PAD _px913c79j OF _MSYSMENU ACTIVATE POPUP _mrecord
ON PAD _px913c7a8 OF _MSYSMENU ACTIVATE POPUP _mwindow
ON PAD _px913c7at OF _MSYSMENU ACTIVATE POPUP reports

Activate the popups
—— when the pads are
chosen.

DEFINE POPUP _msystem MARGIN RELATIVE SHADOW COLOR SCHEME 4|

Create the System
—— popup that is acti-

DEFINE BAR _MST HELP OF _msystem PROMPT "\<Help" ;

KEY F1, "F1"

DEFINE BAR _MST SP100 OF _msystem PROMPT "\-"

DEFINE BAR _MST CAICU OF _msystem PROMPT "\<Calculator"
DEFINE BAR _MST DIARY OF _msystem PROMPT "Calendar/\<Diary"

DEFINE BAR _MST PUZZL OF _msystem PROMPT "Pu\<zzle"
DEFINE BAR 6 OF _msystem PROMPT "Co\<nversions" ;

KEY ALT+N, ""

DEFINE BAR 7 OF _msystem PROMPT "\<Erviromment" ;

KEY ALT+E, ""

DEFINE BAR 8 OF _msystem PROMPT "\-"
DEFINE BAR 9 OF _msystem PROMPT "\<OK" KEY ALT+O, ""

vated when the
System pad is cho-
sen.

Create the options on
—— the System popup.

ON SELECTION BAR 6 OF _msystem ;
DO mhit IN MATNMENU.MFR WITH ’‘convert.app’

L—s ON BAR 7 OF _msystem ACTIVATE POPUP envirormen

tions are chosen.

Menus

Execute procedures and
—— popups when these op-

Menus

About the Generated Program

ON SELECTION BAR 9 OF _msystem DO mexit IN MATNMENU.MPR

* *
* * Cleanup Code & Procedures
* *

* * * * * % *kkkkkk * *kk

FOR 1 = 1 TO cnthar (’environmen’)

Cleanup code.
This code is

DO CASE . . created in the
CASE PRMREAR (’envirommen’,i) = ‘Clock’ General Options
SET MARK OF BAR 1 OF envirommen TO SET(’CLOCK’) = 'ON’ | dialog and is
CASE PRMREAR (’envirommen’,i) = ‘Extended Video’ executed after
SET MARK OF BAR i OF envirormen TO SROW() > 25 the menu is
CASE PRMEAR (’erwirommen’,i) = ‘Sticky’ created and
SET MARK OF BAR i OF ervirommen TO SET(’STICKY’) = 'ON’ activated.
CASE PRMRAR (‘environmen’,i) = ‘Status Bar’
SET MARK OF BAR 1 OF envirormen TO SET(’STATUS’) = 'ON’
ENDCASE
FNDFOR
* * *kkk * % %k * %k * % * % % *k kK *
* * *
* * PV215RLQE ON SELECTION BAR 1 OF POPUP envirormen *
* * *
* * Procedure Origin: *
* * *
* * Fran Menu: MATNMENU.MER, Record: 13 *
* * Called By: ON SELECTION BAR 1 OF POPUP envirormen — *
* * Prampt: Clock *
* * Snippet: 1 *
* * *
* falalalalelel * FHIIIHIK * Procedure.
* This code is
PROCEDURE _pv215rlge executed when
the Clock

TF MRKEAR ("envir ",BAR())
SET CLOCK OFF
SET MARK OF BAR BAR() OF envirommen TO .F.

SET CLOCK ON
SET MARK OF BAR BRAR() OF envirommen TO .T.
ENDIF

option of the

—— Environment

popup is
chosen. The
code turns the
clock on or off
and sets the

mark character.

D3-19

General Options...

General Options...

When the Menu Design window is open and you choose General
Options... from the Menu menu popup, the General Options dialog

appears.
General Options
Procedure: < Edit... >
« OK »
< Cancel >
Location: Menu Code:
(+> Replace [X]1 Setup...
C) Append [X] Cleanup...
C) Before
C > After [X]1 Mark...

General Options Dialog

In the General Options dialog, you can:

® Create setup code, which is executed before other menu
procedures.

® Create a general procedure that is executed for each menu
pad.

® Create cleanup code, which is generated and executed after
the setup and menu definition code but before other menu
procedures.

® Specify the location of menu pads on the menu bar.

® Specify a mark character for menu pads.

D3-20 Menus

General Options...

Setup Code

To view or create setup code for a menu, choose Setup... in the
General Options dialog, and then choose OK. For example, to view
the ORGANIZE.MNX menu file used by the ORGANIZER application,
open the file, choose Setup... in the General Options dialog and
then choose OK.

ORGANIZE Setup
RELEASE PAD _MSYSTEM OF _MSYSMENU

SET TALK OFF

progpath = SY¥S(16>
npath = SUBSTRC(progpath, 1, RATC’ \’, progpathd>-1>

ORGANIZER Setup Code

FoxPro generates and executes setup code before the menu defini-
tion code and other menu code. Because setup code is executed
first, typically you use it to do some or all of the following:

® (Create memory variables and arrays used by the menu.
® Save the current environment, which is restored later.
® (Create a new environment.

® Specify an error-handling routine.

® Save the current menu.

If your menu replaces specific FoxPro system menu pads, your
setup code should release the corresponding system menu pads.

Menus D3-21

An Example of Generated Setup Code

An Example of Generated Setup Code

Add the DBFS
and REPORTS
directories to
the old path.

D3-22

The following example illustrates the setup procedure generated by
FoxPro for the ORGANIZE menu.

R R R R e T T

* R R g R R R R D S R S & 2 3
* * *
* * Setup Code *
* * *
*
*

RELFASE PAD _MSYSTEM OF _MSYSMENU <—— Remove the System menu pad.
SET TALK OFF <——— Suppress the output of commands to the screen.

progpath = SYS(16) «—— Program name with path Remove the
npath = SUBSTR (progpath, 1,RAT(’\’,progpath) -1) «——— program name
and extension.

conv = "’ + npath + "\convert.app" + "’

rest = "’ + npath + "\restaurs.app" + ‘"’

clie = "’ + npath + "\clients.app" + '"’

fami = '"’ + npath + "\family.app" + "’ Add a new path
cred = '"’ + npath + "\credit.app" + ‘"’ — to the applications.
cred = "’ + npath + "\credit.app" + '"’

accn = ‘" + npath + "\acents.app" + ‘"

tran = ‘"’ + npath + "\trans.app" + '"’

opath = SET("PATH") +——— Current path

IF AT (rpath,opath) = 0 «——— If the new path isn’t in the old path...
opath = npath+ ;

"; "+rpath+"\DBFS" + ;

"; "+npath+"\REPORTS" + ;

IIF (EMPTY (opath),"",";") + opath
SET PATH TO &opath ~ «—— Enable the new path.

ENDIF

Menus

An Example of Generated Setup Code

Procedure

You can create a general procedure that FoxPro executes when cer-
tain menu pads are chosen. (A general procedure isn’t executed for
menu pads already associated with commands, menu popups or
other procedures.)

Suppose you are developing an application for which some menu
pads do not yet have associated popups, procedures or other code.
For these menu pads, you can create a code snippet stub that exe-
cutes when the pads are chosen. A code snippet stub typically is a
message that displays for an unfinished menu. For instance, you
can create a general procedure that consists of the following code
snippet:

WAIT ‘Feature not available’ WINDOW NOWAIT

Whenever a menu pad is chosen that has no associated code or
popup, FoxPro displays the “Feature not available” message, and
then the application continues.

To create a general procedure, type its code in the text editing
region (Procedure box) of the General Options dialog. Or, choose
the Edit... push button, choose OK then enter the code in the win-
dow that appears.

Generated Menu Code

Menus

In the generated menu code, FoxPro places an ON SELECTION
MENU command after the menu definition code. If the code snip-
pet in a general procedure is only one line long, FoxPro includes
the snippet in the ON SELECTION MENU command; however, if the
snippet is more than one line long, the menu code generator cre-
ates the following command:

ON SELECTION MENU DO <procedure name> IN <menu name>

The menu generator makes the code snippet a separate procedure
and gives it the unique name <procedure name>.

D3-23

An Example of Generated Setup Code

Cleanup Code

You can create cleanup code for a menu by choosing Cleanup... in
the General Options dialog.

Cleanup code typically contains code snippets that initially:
® Turn mark characters on or off.
® Enable or disable menu pads, popups and options.

When you choose a menu pad, popup or option, the cleanup code
included in menu pad or option procedures can turn a mark char-
acter on or off, enable or disable a menu pad and so on.

In generated code, cleanup code follows the setup code and the
menu definition code but precedes the procedures assigned to
menu pads or menu options.

D3-24 Menus

Cleanup Code Example

Cleanup Code Example

The following example shows the cleanup code for the MAINMENU
menu. This cleanup code turns the mark characters on or off for
individual options on the Environment popup.

For example, if the clock is set on when the cleanup code is ex-
ecuted, SETCCLOCK) = 'ON’ returns true and the mark character for
the Clock option appears.

System Edit Record Windou Reports 9:38:36 pm
Help

Calculator
Calendar/Diary
Puzzle
Environment »||eClock
Extended Video

OK #Sticky Menus
Status Bar
Client Manager

Company: Aspen Planning & Inc. I Balance: 8.08

Contact: Randy Flood Notes:

Address: 41 Wept Drive 6886

Neu York , NY 18823 CTRL+TAB to exit
Area—Phone: 718-823-3651 EXT: 742 Cuisine
Client Type: <(> Active (<> Inactive(> Prospect
< Help> < Neu> < Save > <« Cancel > <Balance>

Display the FOR i = 1 TO cntbar(’environmen’) <—— Loop for the number of options.
mark beside the DO CASE

Clock option if CASE PRMEAR (’envirormen’,i) = ‘Clock’ <+ Clock option.
appropriate. — SET MARK OF BAR i OF envirormen TO SET('CLOCK’) = ‘ON’

Display the mark

beside the . i)

Extended Video CASE PRMEAR(’envircormen’,1) = 'Extended Video’ <—— Video option.
option if — SET MARK OF BRAR 1 OF envirormen TO SROW() > 25

appropriate.

i he mark . . .
Elei?cliaeyt:\eeSticky CASE PRMEAR (‘envirommen’,i) = ‘Sticky’ Menu option.
option if — SFET MARK OF BAR i OF environmen TO SET(’STICKY’) = 'ON’
appropriate.

Display the mark CASE PRMEAR (‘envirommen’,i) = ‘Status Bar’

Status bar option.

beside the Status — SET MARK CF BAR i OF envirormen TO SET(’STATUS’) = 'ON’
Bar option if FNDCASE
appropriate. ENDFOR

Menus D3-25

Cleanup Code Example

Location

The Location radio buttons determine how FoxPro integrates your
menu with the menus on the FoxPro system menu bar:

Replace Choosing Replace replaces the entire FoxPro system
menu bar with your menu bar. When you choose this
option, FoxPro puts the following command at the be-
ginning of the menu definition code:

SET SYSMENU TO

This replaces the menu pads on the system menu bar
with your menu pads.

Append Choosing Append adds your menu to the right end of
the system menu bar.

Before Choosing Before places all your menus on the system
menu bar before a menu you choose from the
Location popup. The following clause is appended to
each menu pad’s DEFINE PAD command:

BEFORE <system pad name>

The <system pad name> is the name of the system
menu pad you choose from the Location popup.

After Choosing After places all your menus on the system
menu bar after the menu pad you choose from the Lo-
cation popup. The following clause is appended to
each menu pad’s DEFINE PAD command:

AFTER <system pad name>

The <system pad name> is the name of the system
menu pad you choose from the Location popup.

Mark... You can specify a global mark character for each
menu pad by choosing the Mark... check box. The de-
fault mark character for menu pads is a diamond ().

When you choose the Mark... check box, a scrollable
list of mark characters appears. You can choose a
mark character from this list, and if you choose a one,
it replaces the default mark character (o).

D3-26 Menus

Cleanup Code Example

Although you can use any character as a mark, the
characters in the following table are better than oth-

ers.
Character ASCII Value
L 2 4
® 7
* 42
v/ 251
Mark... only specifies a mark character for menu pads. It
does not turn the mark character on or off.

Generated Menu Code

When you specify a mark character, the menu generator adds the
command SET MARK OF MENU to the menu definition code. For

example, if you specify a bullet as the mark character, the menu
generator adds the following line:

SET MARK OF MENU _MSYSMENU TO "e"

Menus D3-27

Menu Bar Options...

Menu Bar Options...

When you create menu pads with the Menu Builder, the option
Menu Bar Options... appears on the Menu menu popup. Choosing
Menu Bar Options... displays the Menu Options dialog.

Menu Options
Name: Menu Bar

Procedure: < Edit... >

« OK »

< Cancel >

Color Scheme: Menu Bar || [1 Mark...

Menu Options Dialog

In the Menu Options dialog you can:

® Create code snippets for a global procedure that executes
when a popup option is chosen.

® Choose a color scheme that determines the colors of the menu
bar and menu bar pads.

® Specify a mark character for menu pads.

D3-28 Menus

Menu Bar Options...

Procedure

You can create a menu bar procedure that executes when any op-
tion is chosen from a popup. However, if a command; submenu,
menu popup or procedure is assigned to a particular popup option,
the menu bar procedure does not execute when that option is cho-
sen.

To create a menu bar procedure, type its code in the text editing
region (Procedure box) of the Menu Options dialog. Or, choose the
Edit... push button, choose OK then enter the code in the window
that appears.

Color Scheme

You can specify the colors of the menu bar and the menu pads by
choosing a color scheme from the Color Scheme popup in the
Menu Bar Options dialog. The Menu Bar color scheme 3 is the
default.

Generated Menu Code

While generating a menu’s code, FoxPro appends a COLOR SCHEME
<color scheme number> clause to each DEFINE PAD command. The
<color scheme number> is the option you choose from the Color
Scheme popup.

Menus D3-29

Menu Bar Options...

Mark

You can specify a mark character for every menu pad on the menu
bar by choosing the Mark... check box. A mark character appears
in front of a menu pad when a specific condition occurs.

The default mark character for menu pads is a diamond (e).

When you choose the Mark... check box, a scrollable list of mark
characters appears. You can choose a character from this list and
if you choose one, it replaces the default mark character (o).

This option only specifies a mark character for menu pads.
It does not turn mark characters on or off.

0 The mark character specified in the Menu Bar Options

dialog overrides a mark character specified in the General

Options dialog.

Generated Menu Code

When you specify a mark character in the Menu Bar Options dia-
log, the menu generator appends a MARK clause to each menu
pad’s DEFINE PAD command, as shown in the following example:

DEFINE PAD <pad name> OF <menu name> MARK "e"

D3-30 Menus

Menu Popup Options...

Menu Popup Options...

When you create a menu popup with the Menu Builder, an option
with the popup’s name replaces the Menu Bar Options... option on
the Menu menu popup. If you choose this option from the Menu
menu popup, the Menu Options dialog appears.

Menu Options

Procedure: < Edit... >
<« OK »

< Cancel >

Color Scheme: Menu Pops “ [1 Mark...

Menu Options Dialog

In this dialog you can:

® Create code snippets that execute when an option is chosen
from the popup.

® Specify a different name for the popup.

® Choose a color scheme that determines the colors of the popup
and its options.

® Specify a mark character for the popup’s options.

Menus D3-31

Menu Popup Options...

Procedure

D3-32

You can create code snippets that are executed when any option is
chosen from the popup. However, if a command, a submenu or
another procedure is already assigned to an option, these code
snippets do not execute when that option is chosen.

To create code snippets for the options, type the code snippets in
the text editing region; or choose the Edit... push button, choose
OK then enter the code in the window that appears.

Menus

Menu Popup Procedure Example

Menu Popup Procedure Example

Menus

The following is the menu popup procedure for the CONVERSION
menu. This procedure executes whenever an option is chosen from
the Conversions menu popup. Using the SELECT command, the
procedure queries the UNITS database, stores the results in an
array and then uses the array to create the options in the From
and To popups.

Area “E Conversions
Length “L |C(> Area
Mass ~S |C > Length
Speed “D |C > Mass < Help >
Temperature "T |C > Speed
Time “1 |C > Temperature « 0K »
Uolume “M |C > Time
C > Uolume
From: — M8 To:

| I |

ON SELECTION POPUP conversion; When any option is chosen from
DO _pvjléavOh [~ the CONVERSION popup ...
PROCEDURE _pvjléavOh This procedure executes.

REGIONAL i, size

unittype = PROPER (PROVET()) In the variable UNITTYPE, store the

prompt of the option.

SELECT DISTINCT units.unit ; Get the screen popup options
FROM units ; from the UNITS database, and
WHERE units.type = unittype ; p— then store the options in the
ORDER BY units.type ; FROMARRY array.

INTO ARRAY fromarry

size = ALEN(fromarry)
DIMENSION toarry [size] Create an array named
FOR i = 1 TO size TOARRY from FROMARRY.

onarry[i] = TRIM (fromerry [i [TOARRY contains the options
Er . [1] = ALL (Er (1) in the second screen popup.
toarry[i] = fromarryl[i]

ENDFOR
frompop = framarry (1]
topop = toarry[l]

r 1 - SPACE(19) — Initialize variables.

toval = SPACE(19)

_CURCBJ = OBINUM(framal) | Refresh the window containing the
SHOW GETS WINDOW corvert popups.
D3-33

Menu Popup Procedure Example

Name

A menu popup has a default name, which is the prompt text of the
menu pad to which the popup is attached. If the popup is a sub-
menu, the default name is the prompt text of the option to which
the popup is attached. The default name appears in the Name
text box. You can specify a different name for the popup in this
text box.

Generated Menu Code

In the generated menu code, the following line represents the
menu popup name:

DEFINE POPUP <popup name>

The <popup name> is the name displayed in the Name text box.

Color Scheme

You can specify the colors of the popup and its options by choosing
a color scheme from the Color Scheme popup. The Menu Pops
color scheme (color scheme 4) is the default.

Generated Menu Code

D3-34

In the generated menu code, FoxPro appends a COLOR SCHEME
<color scheme number> clause to the popup’s DEFINE POPUP com-
mand in the menu definition code. The <color scheme number> is
the number of the option you choose from the Color Scheme

popup.

Menus

Menu Popup Procedure Example

Mark

You can specify a mark character for every popup option by choos-
ing the Mark... check box in the Menu Options dialog. The default
mark character is a diamond ().

When you choose Mark..., a scrollable list of mark characters ap-
pears. You can choose a character from this list, and if you choose
one, it replaces the default mark character (o).

This option only specifies a mark character for the popup’s
options. It does not turn the mark character on or off.

Generated Menu Code

When you specify a mark character in this dialog, the menu gener-
ator appends a MARK clause to DEFINE POPUP.

Menus D3-35

Option Check Box

Option Check Box

Every menu pad and option you create can have a comment, a
keyboard shortcut, a unique mark character and a disabled status
— if a specific condition exists. To create these options for a
menu pad or an option, choose the Options check box that appears
when you create the menu pad or option. When you choose this
check box, the Options dialog appears.

System File Edit Database Record Program Windou Menu

Prompt Options

\<{System Submenu [X] Menu Bar ﬂ
\<Edit Submenu [X1
\<Record Submenu [X]

\<Windou Submenu [X] < Try it >
Re\<ports Submenu [X]

Item
< Insert >

< Delete >

Options

Comment.:
<« OK »

< Cancel >

[X1 Shortcut... [X1 Mark...
[X]1 Skip For...

Options Dialog

D3-36 Menus

Option Check Box

Shortcut...

O

A keyboard shortcut is a key or key combination that you can
press to choose a menu pad or option. To create a keyboard short-
cut for a menu pad or option, choose the Shortcut... check box.
When you choose this check box, the Shortcut dialog appears.

To specify a keyboard shortcut, enter a key label and key text in
the Shortcut Dialog. The key label is the key or key combination
that can be used to choose the menu pad or option. The key text
appears to the right of a menu pad or popup option as a reminder.
If you don’t want to display key text in your menu, delete the key
text from the Key Text text box.

If your menu uses the FoxPro system menu bar
_MSYSMENTU, key text reminders do not appear next to menu
pads in the menu bar. However, they do appear next to
popup options.

A keyboard macro takes precedence over a menu pad or
popup option keyboard shortcut.

Generated Menu Code

Menus

When you create a keyboard shortcut for a menu pad or popup
option, the menu generator adds a KEY clause to the menu pad’s
DEFINE PAD command or the popup option’s DEFINE BAR command.
The first expression in the KEY clause is the keyboard shortcut,
and the second expression is the key text.

For example, if you use the key combination Ctrl+J for the short-
cut and AJ as the key text, the menu generator adds the following
line to DEFINE PAD or DEFINE BAR command:

KEY CIRL+J, "~J"
If you delete the key text from the Shortcut dialog, the menu gen-

erator adds the following line to the DEFINE PAD or DEFINE BAR
command:

D3-37

Option Check Box

Mark...

O

You can specify a mark character for a single menu pad or popup
option by choosing the Mark... check box in the Options dialog.
FoxPro puts a mark next to a menu pad or popup option when a
specific condition exists. For example, FoxPro can put a mark next
to an option when the the option is enabled.

The default mark character for menu pads and popup options is a
diamond ().

When you choose the Mark... check box, a scrollable list of mark
characters appears. From this list, you can choose a mark charac-
ter, and if you choose one it replaces the default mark character

(o).

If you specify a mark character for a menu pad or popup
option in this dialog, this character overrides mark
characters specified in other dialogs.

Mark... only specifies a mark character for a menu pad or
popup option. It does not turn the mark character on or off.

Generated Menu Code

When you specify a mark character for a menu pad or popup op-
tion, the menu generator adds a MARK clause to the menu pad’s
DEFINE PAD command or the popup option’s DEFINE BAR command.
For example, if you specify a bullet (o) as the mark character, the
menu generator appends the following to DEFINE PAD or DEFINE
BAR:

MARK "e"

Skip For...

D3-38

If you choose the Skip For... check box in the Options dialog, you
can disable or enable a menu pad or popup option based upon a
logical condition that you specify. If the logical condition evaluates
to true (.T.), FoxPro disables the pad or option, preventing you
from choosing it. If the logical condition evaluates to false (.F.),
FoxPro enables the pad or option, allowing you to choose it.

Menus

Option Check Box

To specify a logical condition, use the Expression Builder, which
FoxPro displays when you choose the Skip For... option. For ex-
ample, consider the following expression:

CDOW(DATE()) = 'Monday’
If you enter this expression in the Expression Builder dialog,

FoxPro enables the menu pad or popup option every day of the
week except Monday (when CDOW(DATE()) = ‘Monday’ is true).

Generated Menu Code

When you create a logical expression to disable or enable a menu
pad or popup option, the menu generator adds a SKIP FOR clause to
the menu pad’s DEFINE PAD command or the popup option’s
DEFINE BAR command. For example, if you create the logical ex-
pression shown in the previous example, the menu generator adds
the following line to the DEFINE PAD or DEFINE BAR command:

SKIP FOR CDOWN(DATE()) = 'Monday’

Pad Name...

If you choose the Pad Name... check box in the Options dialog, you
can specify a name for the menu pad. If you do not specify a
name, FoxPro uses the SYS(2015) function to create a name for the
menu pad.

Generated Menu Code

When you specify a menu pad name by choosing the the Pad
Name... check box, FoxPro includes the name in the menu defini-
tion code. For example:

DEFINE PAD <MyMeruPad> OF _MSYSMENU

Comment

You can type a comment for the menu pad or popup option in the
text editing region of the Options dialog. The comment can serve
as a reminder or provide information about the menu pad or popup
option. FoxPro stores the comment in the COMMENT memo field in
your menu’s database.

Generated Menu Code

Menus

FoxPro does not include the comment in the generated menu code.

D3-39

Debugging Your Menus

Debugging Your Menus

After you create a menu, it might not behave as you intended. To
diagnose the menu’s problems, you can examine its code using the
Trace and Debug windows. You can also open, examine and mod-
ify a menu program in the FoxPro text editor using the MODIFY
COMMAND command. For details about this command, refer to the
FoxPro Language Reference.

change it, you will lose the changes when you modify menus
using the Menu Builder and then regenerate the menu

0 Never change the menu program (the .MPR file). If you
program.

Trace Window

You can display menu program code in the the Trace window as
the program executes. FoxPro highlights each line as it is exe-
cuted.

In this window, you can set breakpoints on lines of menu program
code to pause program execution just before each line, and you can
single step through a menu program, executing one line at a time.

Debug Window

You can display the values of memory variables, array elements,
functions and expressions in the Debug window as a menu pro-
gram executes. Additionally, you can set breakpoints in this win-
dow to halt program execution when the values of these items
change.

FoxDoc

Included with FoxPro, FoxDoc is a tool that creates documentation
for menu programs or applications containing menus.

For more information about using FoxDoc with menu programs,
see Documenting Applications with FoxDoc later in this manual.

D3-40 Menus

Debugging Your Menus

Comment Boxes

Menus

The menu generator automatically inserts a comment box before
each menu program section. Comment boxes describe the origin of
code that follows the box and are useful for debugging menu pro-
grams. Additionally, the information in comment boxes is used by
FoxDoc to document the program.

A comment box describes the type of code (setup, menu definition,
cleanup or procedure) that follows the comment box. When the
code is a procedure, the comment box includes:

® The procedure name.
® The command that calls the procedure.

® The number of the .MNX database record that contains the
procedure.

® The prompt text of the menu pad or popup option that calls
the procedure.

® The procedure’s snippet number. (Each procedure in the
generated code has a number.)

For more information about debugging programs with FoxPro, see
Debugging Your Applications later in this manual.

The following example is a procedure comment box from the
CONVMENU menu program.

* khkkkkkkhkkkhkkkhkkkkhkkhkhkkhkhhkhhkhkdhhhdhhkhhkhkdhddrhkhdkhkhdkihhrddrdih
* * *
* * _PX90P3U3N ON SELECTION POPUP conversion *
* * *
* * Procedure Origin: *
* * *
* * Fraom Menu: CONVMENU.MPR, Record: 4 *
* * Called By: ON SELECTION POPUP conversion *
* * Snippet: 1 *
* * *
* Ihkhkhkhhkkkhkhkhhkkkhhkkhkhhkkkkhkxkkdkhkkkhkhkhkrkhkdhhkrdhdhkrhhkhkdkddirk

D3-41

Additional Tip

Additional Tip

Hiding the Command Window

D3-42

If your application runs in the development version of FoxPro (in-
stead of a runtime version), you might want to hide the Command
window so that only your menu is visible. To hide the Command
window, create a small window and then use the ACTIVATE WIN-
DOW command to activate the Command window in the small win-
dow. Do not activate the small window. For example, the follow-
ing program lines hide the Command window:

DEFINE WINDOW hidecomm FROM 1,1 TO 3,3
ACTTVATE WINDOW command IN hidecomm

Menus

4 Coordina_,ting Screens and Menus |

Many screens have associated menu systems that are called from
the screen program. These menu systems usually contain:

® Options with keyboard shortcuts for accessing screen controls.

® Options that are not available in the screen because they are
used infrequently.

® Options that trigger irreversible actions (such as PACK).

This chapter covers managing a menu system and accessing screen
controls via a menu.

Coordinating Screens and Menus D4-1

Managing a Menu System

Managing a Menu System

Menus created in the Menu Builder automatically interact with
the FoxPro menu system. If you create a menu and add it to the
FoxPro menu system, you don’t have to explicitly activate the
menu with ACTIVATE MENU.

The following sections give you more information about managing
menus that you create.

Accessing Menus During a READ

D4-2

The READ command activates controls in FoxPro screens. Whether
or not your menus are accessible when a READ is active depends on
the type of READ you issue.

A modal READ is a READ that includes the MODAL key word or a
WITH <window title list> clause. When you issue a modal READ,
your menu is disabled. However, during the READ you can reacti-
vate the menu and make it accessible by including an appropriate
WHEN clause in the READ command.

For example, to reactivate a menu that interacts with the FoxPro
menu system, include the following statement in a READ WHEN
clause:

SET SKIP OF MENU _MSYSMENU .F.
You can also use SET SKIP OF PAD and SET SKIP OF BAR in a READ

WHEN clause to selectively enable menu pads and options in your
menu.

After you issue a READ, access to your menu depends on the set-
ting of SYSMENU, as discussed in the following section.

Coordinating Screens and Menus

Managing a Menu System

Controlling Menus with SET SYSMENU

With the SET SYSMENU command, you can disable your menu, se-
lectively add and remove items from the menu, restore the default
FoxPro menus, and control access to your menu during program
execution. Some of the ways you can use SET SYSMENU are:

® SET SYSMENU ON — Your menu bar is accessible during
program execution when FoxPro waits for keyboard input,
such as during BROWSE, a non-modal READ, or MODIFY MEMO.
The menu bar is not displayed, but you can display it and
make it accessible by pressing the Alt or F10 keys or by
double clicking the right mouse button.

® SET SYSMENU OFF — Your menu bar is not accessible during
program execution.

® SET SYSMENU AUTOMATIC — Your menu bar is displayed at all
times during program execution and is accessible during
program execution when FoxPro waits for keyboard input.

® SET SYSMENU TO DEFAULT — The default FoxPro menu system
is restored to its default configuration.

For more information about the SET SYSMENU command, see the
FoxPro Language Reference.

Saving and Restoring Menus

PUSH MENU and POP MENU help you save and restore menus.
Using these commands, you can push a menu onto a stack in mem-
ory and restore it later by popping it off the stack.

Pushing a menu onto a stack saves its current state but does not
remove it from the screen. While the menu is saved in memory,
you can change the menu on the screen, or you can replace it with
another menu. After changing or replacing the original menu, you
can restore the original menu by using POP MENU.

Coordinating Screens and Menus D4-3

Managing a Menu System

Menus are pushed onto and popped off the stack in a “last in, first
out” order. The number of menus saved in memory is limited only
by the amount of memory available. For more information about
PUSH MENU and POP MENU, refer to the FoxPro Language
Reference.

The ORGANIZER application demonstrates how menus are replaced
and restored. When you choose a menu option in the ORGANIZER,
a screen program runs. This program pushes the current menu
into memory then runs a menu program that creates a new menu
to replace the original one. When the screen program ends, the
original ORGANIZER menu is restored (popped) from memory.

The following example shows the CONVERT.SPR screen program
commands that PUSH the ORGANIZER menu onto a stack in mem-
ory, replace the ORGANIZER menu with its own menu and then re-
store the original ORGANIZER menu when the screen program ends.

PUSH MENU _MSYSMENU Defined in the setup code for
the screen.
0o conmu‘n{pr Defined in the READ WHEN

code snippet for the screen.

POP MENU _MSY-SMENU Defined in the cleanup code
for the screen.

Calling Screen and Menu Programs
To call a menu program, use the following syntax:
DO <menu name>.MPR
Similarly, to call a screen program, use the following syntax:
DO <filename>.SPR
You must include the .MPR or .SPR extension, because different

types of executable files such as menus, screens and queries, can
have the same names.

D4-4 Coordinating Screens and Menus

Accessing Screen Controls via a Menu

Accessing Screen Controls via a Menu

If screen controls such as radio buttons are frequently used, you
can help users by allowing access to these controls via menu op-
tions and keyboard shortcuts. For example, the CONVERT.SCX
screen has a set of radio buttons, menu options, and keyboard
shortcuts that you can use to select a measurement unit, such as
area, length or mass.

To define a menu option, you can often use the code that defines
the behavior of the corresponding screen control. Simply copy the
code used for the screen control into the code snippet for the menu
option.

Coordinating Screens and Menus D4-5

5 Prol'ect — The Main Organizing Tool

The Project Manager organizes a FoxPro application by gathering
into a project the necessary components, including screens, menus,
programs, reports and so on. The project ensures that the compo-
nents are up-to-date when you want to build the application.

Creating a project is the first step in developing a FoxPro applica-
tion. To create a project, you add all application components to a
new project file, even if the components are not complete. Then,
you develop the components by editing them in the Project win-
dow.

This chapter covers:
¢ Understanding the advantages of a project
* Knowing what a project can contain
® Creating one project or several projects
® Using a home directory for portable applications
® Selecting a main file
¢ Including modifiable files in applications
¢ Coping with unknown references in a project

® Including procedural code in a project

Project — The Main Organizing Tool D5-1

Advantages of a Project

Advantages of a Project

D5-2

Locates and Assembles Referenced Files

When you build a project, FoxPro automatically locates and gath-
ers all components of the application. You can build a project from
an existing application by adding the startup program for the ap-
plication and then rebuilding the project. When built, the project
includes all referenced programs, screens, menus, reports, queries,
labels and libraries.

Remembers the Location of Every File it Contains

A project tracks the location of all components that comprise an
application. This tracking ability gives you flexibility in how you
organize programs, screens and other components on your hard
disk. For example, because you can put the components anywhere
on the disk, you can create many directories so that you can orga-
nize the components by function, subsystem, or other appropriate
category.

Accesses Prewritten Programs and Interface Components Easily

Because a project permits an application’s components to be in
many directories, it permits access to libraries of prewritten pro-
gram elements like control panels and browsers that are stored in
a common directory and used by many applications.

Stores Object Code

A project stores object code in its memo fields. This reduces the
disk clutter caused by saving object files for each compiled version
of a program.

Tracks Current Versions of Files

When you build a project, FoxPro ensures that the object code
stored in the project is current. If the code isn’t current, FoxPro
recompiles programs, regenerates and recompiles screens and
menus, and so on. This tracking feature is similar to the function
of “make” utilities, with which you might be familiar.

Streamlines Distribution

When you generate an application or .EXE file from a project, all
components of the application are gathered into a single .APP or
.EXE file. This makes distribution of the application particularly
convenient.

Project — The Main Organizing Tool

What Can Projects Contain?

What Can Projects Contain?

A project coordinates all components of an application. FoxPro
projects can contain the following components: programs, menus,
formats, queries, reports, labels, libraries, screen sets (containing
one or more screens), and any other type of file.

These components fall into the following categories:
® Procedural: programs
® Interface: screen sets, menus, formats
® Data Retrieval/Reporting: reports, labels, queries
® External API Routines: libraries

® Other Components: databases, .MEM files, keyboard macros,
and so on

Project Components
Procedures:
» Programs
Interface: External Routines:
» Screen sets Project « Libraries
* Menus
» Formats
Retrieval/Reporting: Other Files:
« Reports » Databases
« Labels * .MEM files
 Queries » Keyboard macros

Project — The Main Organizing Tool D5-3

One Project Versus Multiple Projects

One Project Versus Multiple Projects

The ORGANIZER contains several projects — one for every module
of the application. The ORGANIZER uses a menu to call the appro-
priate project. The following projects are part of the ORGANIZER:

® ACCNTS.PJX

® CLIENTS.PJX

® CONVERT.PJX
® CREDIT.PJX

® FAMILY.PJX

® ORGANIZE.PJX
® RESTAURS.PJX
¢ TRANS.PJX

Though the ORGANIZER includes several projects, it could include
only one project. The advantage of using one project for an entire
application is that changes made to shared utility screens, pro-
grams, and so on are propagated throughout the project.

Multiple projects are useful in applications for which you change
or sell individual modules of the application. With multiple pro-
jects, remember that when you make changes to a component used
by several projects, you must rebuild all the projects containing the
component.

D5-4 Project — The Main Organizing Tool

Home Directory for Portable Applications

Home Directory for Portable Applications

Each project has a home directory that you can use to make your
applications portable. While developing an application, save the
project and the application built from the project in the home di-
rectory.

You can specify a home directory in the Home Directory area of
the Project Options dialog. For details, refer to the chapter titled
Project Manager in the FoxPro User’s Guide.

Store files needed by the project in subdirectories of the home di-
rectory. (Create a subdirectory for each type of file needed by the
project so that you can organize files by file type.)

To distribute an application to another computer, you can use any
directory on the destination computer as the home directory. The
home directory can have any name and can be anywhere in the
directory structure.

When distributing an application, you must distribute any project
files marked as excluded (refer to Including Modifiable Files in Ap-
plications later in the chapter). On the destination computer, first
duplicate the names and structures of directories holding the ex-
cluded files on the source computer, and then copy the files from
the source directories to the destination directories.

To summarize the distribution procedure, copy the application to
its new home directory, create the needed subdirectories in the
home directory and then copy the excluded files to these sub-
directories.

Project — The Main Organizing Tool D5-5

Home Directory for Portable Applications

Home
APPS Directory C:

7 N

PROJ1

DBFS SCREENS MENUS DBFS

N\ N\

REPORTS LABELS REPORTS LABELS

Source Directory Structure Destination Directory Structure

In the previous example, the source home directory is
D:\APPS\PROJ1, and this directory contains subdirectories for
databases, reports, labels, screens and menus.

The destination home directory is C:\APPL1, and this contains sub-
directories for tables, reports and labels. These directories exist
because the files in them were marked as excluded in the source
directories. Notice that each directory containing these files has
the same name and structure as that of the corresponding direc-
tory on the source computer.

D5-6 Project — The Main Organizing Tool

Selecting a Main File

Selecting a Main File

When you run an application, the main file in the project executes
first. In the Project window, the main file has a bullet next to its
type, as shown in the following figure.

ACCNTS. PJX

Name Type

ACCNTS Screen Set Edit >

ALERT Screen Set

BALANCE Screen Set Info >

BROUWSER Screen Set

CREDCARD # Database < Add >
Main DETAILS # Database

File —IDLEREAD « Program < Remove >
LABELS ? Database
LABELS Screen Set < Build >

ACCNTS Project

For example, in the ACCNTS project, the IDLEREAD file starts the
ACCNTS module when you choose Money Manager from the
Organize... submenu and then choose Accounts from the next sub-
menu.

Typically, the main file is the first executable file (screen, menu, or
program) added to the project, but you can specify a different main
file, by using Set Main on the Project menu.

Project — The Main Organizing Tool D5-7

Including Modifiable Files in Applications

Including Modifiable Files in Applications

D5-8

All files referenced by an application should be part of a project.
When you build an application from a project, FoxPro combines all
executable project files (programs, screens, menus), making them
part of the application’s code. FoxPro does not automatically in-
clude non-executable files, such as reports, labels and databases;

however, these can be included in read-only form.

To give users the ability to change a non-executable project file,
select the file in the Project window, then choose Exclude from the
Project menu popup. A ¢ appears in the Project window, next to

the selected file.

Exclude files such as databases, indexes, reports and labels
that you want the user to be able to change. You must dis-
tribute excluded files with an application if the application

needs them.

Include help databases and databases that contain look-up
information to prevent users from modifying them.

For example, in ACCNTS.PJX, three databases are excluded so that
users can modify them when running the ORGANIZER.

ACCNTS. PJX
Type

Name

ACCNTS Screen Set < Edit >
ALERT Screen Set
BALANCE Screen Set < Info
BROWSER Screen Set
~CREDCARD # Database < Add
Excluded L. DETAILS # Database
files IDLEREAD « Program < Remove >
- LABELS @ Database
LABELS Screen Set < Build >

ACCNTS Project

If you change your mind and want to include a file you excluded,
select the file in the Project window, and then choose Include from

the Project menu popup.

Project — The Main Organizing Tool

Unknown References in Projects

Unknown References in Projects

When you build a project, the Project Manager alerts you when it
cannot find a file or an array that is referenced in the project. In
this case, do one of the following:

® Ensure that the name is spelled correctly and that the file or
array exists.

® For a file, manually add the file to the project, and then build
the project.

® Temporarily ignore the message and build the project without
resolving the reference. Doing this usually does not cause
problems with an application but might cause problems with
an executable file.

® Add an EXTERNAL command so that FoxPro automatically
includes the file or finds the array, and then build the project.

Use EXTERNAL to include files or resolve undefined references
in a project created by the Project Manager. You must
include a key word (LABEL, LIBRARY, MENU, PROCEDURE,
REPORT or SCREEN) before the file name to tell the Project
Manager the type of file to include in the project. EXTERNAL
is used only by the Project Manager and is ignored during
program execution.

The following examples illustrate ways of using the EXTERNAL
command.

Use an EXTERNAL PROCEDURE command to identify an external
procedure or a user-defined function (UDF):

EXTERNAL PROCEDURE delblank PROCEDURE delblank nmust exist
STORE ‘delblank’ TO trimblanks
DO (trimblanks) WITH ‘A B C D E’

If a report definition file is referenced with a name expression or
macro substitution, use the EXTERNAL REPORT command:

EXTERNAL REPORT dataentr && REPORT dataentr must exist
STORE ’dataentr’ TO reportfile
MODIFY REPORT (reportfile)

Project — The Main Organizing Tool D5-9

Unknown References in Projects

If you create an array in a program and then use the array in a
lower-level program, as in the following example, you might need
to include the EXTERNAL ARRAY command to tell the Project Man-
ager where to look for the array outside the program:

DIMENSION invoice (4)
SICRE 'Paid’ TO invoice
DO dispinvo

*** Program dispirvo ***
PROCEDURE

EXTERNAL ARRAY invoice

? invoice(1)

? invoice(2)

? invoice(3)

? invoice(4)

RETURN

*** End of dispinvo program ***

When you pass an array to a UDF or procedure, you might need to
identify the array in the UDF or procedure for the Project Manager.
To do this, use the EXTERNAL ARRAY command:

DIMENSION firstarray (2) && Create an array
EXTERNAL ARRAY arraytwo && Name of array used in the UDF
SET TALK OFF

STORE 10 TO firstarray (1)
STORE 2 TO firstarray(2)
= ADDIWO (@firstarray) && Pass array by reference to a UDF

FUNCTION ADDIWO
PARAMETER arraytwo

CLEAR

arraytwo (1) = arraytwo(l) + 2
arraytwo (2) = arraytwo(2) + 2
? arraytwo (1)

? arraytwo(2)

For more information about the EXTERNAL command, refer to the
FoxPro Language Reference.

D5-10 Project — The Main Organizing Tool

Procedural Code in Projects

Procedural Code in Projects

The Project Manager combines files into a single application. In
most applications, you will include procedural code to do one or
more of the following:

® Provide an error handling routine.

® Establish a global working environment (save the current
environment and create a new environment).

® Preserve and restore the system menu bar.
® Test for available resources.

®* Contain utility procedures that dont pertain to a specific
screen or menu, but might be used by several screens or
menus.

In the ORGANIZER, each project except for CONVERT contains a
main program that establishes a global working environment for
the application. The following sections use examples from the
ORGANIZER to illustrate the use of procedural code in projects.

Project — The Main Organizing Tool D5-11

Procedural Code in Projects

Error Handling

D5-12

One of the first procedure calls in IDLEREAD.PRG is to an error
handling routine. An error-handling routine traps for errors in
your application so that you can gracefully recover from them.

When you include an error-handling routine at the beginning of
your startup program, you can catch any error that occurs in the
application (including the startup program). For instance, when
an error occurs in the ORGANIZER, the following procedure exe-
cutes.

*
* ERRCRHANDLER - Error Processing Center.

*

PROCEDURE errorhandler

PARAMETER messg, lineno

PRIVATE fromrow, fromcol, torow, tocol
frorrow = INT((SROW()-6)/2) ‘
fromcol = INT((SCOL()-50)/2) Define window

Make variables private.

torow = fromrow + 6 [coordinates.
tocol = framcol + 50

DEFINE WINDOW alert;
FROM fromrow, fromcol TO torow, tocol; Define an
FLOAT NOGROW NOCLOSE NOZOOM SHADOW DOURLE; [error window.
COLOR SCHEME 7

ACTIVATE WINDOW alert +~———— Display the error window.

0,0 CLEAR

@
@ 1,0 SAY PADC(ALLTRIM(messg), WCOLS())
IF NOT EMPTY (1ineno)
@ 2,0 SAY PADC("Line Number: "+STR(lineno,4), WCOLS())
ENDIF
€ 3,0 SAY PADC("Press any key to cleanup and exit", WCOLS())

WAIT ™" Display an error message

in the window.
ON ERROR
POP _MSYSMENU
CLEAR READ ALL
RELEASE WINDOW alert
RELFASE workarea, exact, safety
CANCEL

RETURN

Project — The Main Organizing Tool

(— Clean up the environment.

Procedural Code in Projects

Saving the Current Environment

If your application returns control to the Command window or an-
other application when finished, save the current environment in
your startup routine so that you can restore it later. However, if
your application returns to MS-DOS™ when finished, you do not need
to restore the environment.

The environment includes:
® Open files such as databases and indexes in all 25 work areas
® Relations between databases
* Filters in effect
® DEFAULT and PATH settings
® Current procedure, help and resource files
® SET command status (ON, OFF and so on)
® Color settings
® System menu bar and menu popups
® Keyboard macros

If you save the environment in your startup routine, you can re-
store it just before your application terminates in a cleanup rou-
tine. For example, if TALK is SET ON before your application runs
and your application sets TALK OFF, the application should SET
TALK ON before terminating.

TALK is ON by default but usually needs to be OFF when you run
an application. If you want TALK to be OFF, make the first line in
your application SET TALK OFF. For example, in the ORGANIZER,
the following code from IDLEREAD.PRG checks to see if TALK is on
and, if necessary, sets TALK OFF.

IF SET("TALK") = "ON"
SET TALK OFF
m.talkstat = "ON"

ELSE
m.talkstat = "OFF"

ENDIF

Project — The Main Organizing Tool D5-13

Procedural Code in Projects

D5-14

How ORGANIZER Saves Environment Settings

The ORGANIZER application changes the settings of ESCAPE,
NOTIFY, EXACT, SAFETY and DECIMALS, so UTILITY.PRG saves the
current settings of these commands in memory variables. These
memory variables are released from memory when the application
is finished.

For example, the selected work area is saved with the following
command:

m.area = SELECT()

The following lines from IDLEREAD.PRG save the setting of EXACT,
SAFETY and DECIMALS:

m.escap = SET("ESCAPE")
m.noti = SET("NOTIFY")
m.exact = SET("EXACT")
m.safety = SET("SAFETY")
m.deci = SET("DECIMALS")

Additional Commands to Save Environment Settings

You can use the following commands to save the current FoxPro
environment, keyboard macros, memory variables and arrays,
screen or window image, and window definitions for later restora-
tion:

® CREATE VIEW — Saves the current FoxPro environment. You
can restore this environment by using RESTORE VIEW.

® SAVE MACROS — Saves the current keyboard macros to a file or
memo field. You can restore these macros by using RESTORE
MACROS.

® SAVE TO — Saves the current memory variables and arrays to
a file or memo field. You can restore these variables and
arrays by using RESTORE FROM.

® SAVE SCREEN - Saves the current screen or window image to
memory. You can restore the screen or window from memory
by using RESTORE SCREEN.

® SAVE WINDOW - Saves the current window definitions to a file
or memo field. You can restore the windows by using
RESTORE WINDOW.

Project — The Main Organizing Tool

Procedural Code in Projects

Creating the New Environment

After you save the current environment, you can define a new en-
vironment for the application. Some aspects of the environment
that you can define are:

® Global memory variables and arrays
® SET commands

¢ Colors

® Procedure, help and resource files

For example, in the ORGANIZER application, UTILITY.PRG defines
the environment by using the following commands:

SET HELP TO "ORGHELP.DBE"
SET HELP ON

SET TEXIMERGE DELIMITERS
SET MEMOWIDTH TO 256

SET UDFPARMS TO VALUE
SET DATE TO AMERTCAN

SET EXACT ON

SET SAFEIY OFF

SET DECIMALS TO 18

Preserving and Restoring the System Menu Bar

To save the FoxPro system menu bar before changing it, push the
bar into memory. By pushing the bar, you can restore it later.
The following command preserves the FoxPro system menu bar:

PUSH MENU _MSYSMENU

If you push the system menu bar before changing it, you can re-
store the bar pushed by using the following command:

POP MENU _MSYSMENU

Project — The Main Organizing Tool D5-15

Procedural Code in Projects

Testing For Resources

Your application might need certain resources to run, such as spe-
cific files, a specific amount of memory or disk space and so on.
Several FoxPro functions can test for resources that your applica-
tion might need:

® FILE() — Tests for the existence of a specified file on disk.
Use FILE() if your application requires certain files.

® SYS(2010) — Returns the FILES setting in your CONFIG.SYS
system configuration file. If your application opens many
files, use SYS(2010) to ensure that you can open all of them.

® MEMORY(), SYS(12), SYS(1001) and SYS(1016) — Test the amount
of available memory. If your application requires a minimum
amount of memory, these functions can determine if your
application will run successfully.

® DISKSPACE() — Returns the amount of remaining disk space.
Certain FoxPro operations (SORT, for example) require
substantial disk space for the temporary work files they
create.

If the required resources are not available, you can display a warn-
ing before executing the rest of the application.

Utility Procedures

D5-16

Procedural code often contains utility procedures that do not per-
tain to a specific screen or menu but might be used by several
screens or menus. Some of the utility procedures in UTILITY.PRG
are:

® STRIPEXT — Removes the extension from a file name.
® STRIPPATH — Removes the path from a file name.

® LOCATEDB - Attempts to locate and open a database, asking
for your help if the table cannot be found.

® CHECKFPT — Checks to see if a memo file exists for a
database.

Project — The Main Organizing Tool

Other Development Tools

6 Debugging Your Application

FoxPro provides a comprehensive set of program debugging tools,
including a Trace window, Debug window, text editor and online
help. These tools help you locate and fix program errors.

This chapter covers:
¢ Compilation errors
¢ Runtime errors

®* Debugging suggestions

Debugging Your Application D6-1

Program Errors

Program Errors

D6-2

FoxPro programs can include two types of errors:
® Compilation errors that occur as a program compiles
®* Runtime errors that occur as a program executes

For example, suppose you try to open the CUSTOMER database by
issuing the USE command but you type it incorrectly:

MJSE customer
When compiled, this command produces the “Unrecognized com-

mand verb” error message. This represents a compilation error.

Alternatively, a runtime error occurs when a command compiles
successfully but does not execute as expected. For instance, sup-
pose the CUSTOMER database was erased, but you try to use it by
issuing the command:

USE custarer
This command is syntactically correct and compiles without error,

but when executed it produces the error message “File ’customer’
does not exist.” This represents a runtime error.

Debugging Your Application

Compilation Errors

Compilation Errors

Before you can run a FoxPro program you must compile it. You
can compile manually or let FoxPro do so automatically.

Compiling Manually

You can compile programs manually from the Compile dialog that
appears when you choose Compile... from the Program menu:

®* Choose To .ERRs, to create a compilation error log file having
the program’s name and the .ERR file extension.

® Choose To File, to direct compilation errors to a log file of
your choice.

The compilation error log file contains each program line that
caused an error during compilation, followed by the line’s number
and error message. You can use the FoxPro editor to open and
examine the error log file.

Using the COMPILE Command

You can compile programs using COMPILE from either the Com-
mand window or a program. The SET LOGERRORS command deter-
mines whether you get a compilation error log file when you use
COMPILE:

® If LOGERRORS is SET ON before you issue COMPILE, you get a
compilation error log file having the program’s name and the
.ERR file extension. If a log file with the same name already
exists, FoxPro writes over it without warning you.

® If a program compiles without errors, or if LOGERRORS is SET
OFF before you compile, a log file is not created. Additionally,
if a program compiles without errors and a log file with the
compiled program’s name exists, the file is deleted.

Debugging Your Application D6-3

Compilation Errors

Compiling Automatically After Saving

When you create or edit a program using the FoxPro editor, a
Compile when saved check box is available in the Preferences dia-
log. The Preferences dialog is displayed when you choose
Preferences... from the Edit menu. If you check Compiled when
saved, programs compile automatically each time you save them:

* If LOGERRORS is SET ON and Compile when saved is checked
when you save a program, a compilation error log file having
the program’s name and the .ERR file extension is created. If
a log file having the same name already exists, FoxPro writes
over it without warning you.

¢ If a program compiles without errors, or if LOGERRORS is SET
OFF, the log file is not created. If a program compiles without
errors and a log file having the program’s name already
exists, the file is deleted.

Understanding the Causes of Compile Errors

D6-4

Common causes of compilation errors are:

® Syntax errors that occur when a FoxPro command or function
is misspelled or contains illegal characters.

® Mismatched or missing key words in any FoxPro structured
commands. The structured commands are DO CASE, DO
WHILE, IF ... ENDIF, FOR ... ENDFOR, and SCAN ... ENDSCAN.
For example, using IF without including the required ENDIF
generates an “If/else/endif mismatch” error.

® Program lines that are too long. A command or function
cannot exceed the maximum line length of 2,048 characters.

If a program generates compilation errors, fix the program lines
that generate the errors and then recompile the program. Con-
tinue this process until the program compiles without error.

Debugging Your Application

Runtime Errors

Runtime Errors

Runtime errors are errors that occur while a program executes.
Although a program can compile without errors, it can still gener-
ate runtime errors. Often, runtime errors are more difficult to find
than compilation errors, but the FoxPro Debug and Trace windows
can help you find them.

The Trace window displays a program’s source code as the pro-
gram executes, highlighting each line as it executes. Using this
window, you can set breakpoints on program lines to pause pro-
gram execution just before each line, and you can single step
through a program, executing a single program line at a time.

As a program executes, the Debug window helps you monitor the
values of memory variables, array elements, functions, .DBF fields,
and expressions. Using this window, you can set breakpoints to
halt program execution when the values of any of these items
change.

The Trace and Debug windows can be open simultaneously, and
you can set program breakpoints in both windows. The number of
breakpoints you can set in both windows is limited only by the
available memory.

For more information about the Trace and Debug windows, refer to
the Program Menu chapter in the FoxPro User’s Guide.

Debugging Your Application D6-5

Debugging Suggestions

Debugging Suggestions

D6-6

When debugging a program, consider the following suggestions.

Adjust Your Video Display

If your video hardware supports extended display modes, consider
switching to an extended video mode before you start debugging.
When your video display is in extended mode, you can open the
Trace and Debug windows below any output windows the program
puts on the screen.

If your video hardware does not support an extended video mode
and a program window covers the Trace or Debug windows, pause
program execution and then manually move the Trace or Debug
window.

Document Your Code with FoxDoc

Use FoxDoc to document one program or an entire application.
For example, with FoxDoc you can create tree structures for an
application, application summaries, and variable cross-reference
reports. For more information, refer to the Documenting Applica-
tions with FoxDoc chapter later in this manual.

SET ESCAPE ON

The command SET ESCAPE OFF prevents a program from pausing
when you press Escape. If youre debugging a program that con-
tains SET ESCAPE OFF, temporarily change it to a comment by put-
ting an asterisk (*) at the beginning of the line containing SET
ESCAPE OFF.

Pause Execution with Breakpoints

Set breakpoints in the Trace window to pause program execution
before the line with the breakpoint.

Set breakpoints in the Debug window to pause program execution
whenever the value of an item changes.

After pausing a program, you can issue commands (in the Com-
mand window) that help you examine and change the current
FoxPro environment.

Debugging Your Application

Debugging Suggestions

Tracing a Program that is Passed Parameters

You can pass parameters to a program and then trace its execution
by taking the following steps:

1. Open the Trace window.

2. From the Program menu in the Trace window, choose the
Open... option and then choose the program to trace.

3. Set a breakpoint on the first executable line of the program.

4. In the Command window, DO the program WITH the parame-
ters.

DISPLAY MEMORY and DISPLAY STATUS

After pausing a program’s execution, you can get valuable informa-
tion about the current FoxPro environment by using the DISPLAY
MEMORY and DISPLAY STATUS commands:

®* DISPLAY MEMORY displays the name, type, contents, and
status of all currently-defined memory variables and memory
variable arrays. In addition, system memory variables and
their values are displayed, as are all defined menu bars and
pads, menus and windows.

® DISPLAY STATUS displays the current status of the FoxPro
environment. Items displayed include active databases and
indexes, relations, low-level file status, SET command settings,
and information about record and file locking if you use
FoxPro in a network environment.

Screen and Menu Code

You can include screens and menus in a project created by the
Project Manager. To also include the generated screen and menu
source code (for debugging purposes), choose the Save Generated
Code check box in the Project Options dialog. This dialog appears
when you choose Options... from the Project menu.

Generated menu and screen programs are well documented. All
code snippets are labeled with their unique names (provided by the
generator), the screens, the READ or object level clauses, and the
object types with which the code snippets are associated.

Debugging Your Application D6-7

Debugging Suggestions

If you find errors while running a generated program, suspend or
cancel the program and note the location in the generated program
where the errors occurred. Then, return to the screens or menus
that generated the errors and change the appropriate code snip-
pets.

SET DOHISTORY

SET DOHISTORY is useful for isolating particularly stubborn bugs.
Setting DOHISTORY ON places commands from programs into the
Command window as they execute, allowing you to edit and re-exe-
cute the commands (if appropriate).

Use SET DOHISTORY only temporarily because it creates a
disk-based document as the program executes, and this can
fill up a large disk very quickly. When you finish debugging
your programs, be sure to remove any SET DOHISTORY ON

commands from the programs before you execute or

distribute them.

D6-8 Debugging Your Application

7 Using SQL SELECT

This chapter illustrates some features of SQL SELECT by posing
problems and suggesting solutions to them. However, it illustrates
only some of the things SQL SELECT can do. For details about SQL
SELECT, refer to the FoxPro Language Reference.

Most of the problems illustrated in this chapter have several solu-
tions because SQL is so versatile. Therefore, don’t be concerned if
your solutions do not match the ones shown on the following

pages.

For problems having several solutions, pick the one that seems
most natural to you. (However, remember that performance varies
between solutions.)

Using SQL SELECT D7-1

Query Databases

Query Databases

The queries in this chapter use the CUSTOMER, INVOICES, DETAIL,
SALESMAN, OFFICES and PARTS tutorial databases. These tables
are in the TUTORIAL directory, and the following figure shows the
relationships between them.

D7-2

Database Relationships

CUSTOMER INVOICES DETAIL
CNO WO |——| INO
COMPANY T CNO LINE
CONTACT IDATE QTY
ADDRESS ITOTAL PNO
CITY SALESMAN PRICE
STATE LTOTAL
7IP
PHONE SALESMAN
ONO SALESMAN PARTS
YTDPURCH | ONO PNO
LAT NAME DESCRIPT
LONG YTDSALES ONHAND
ADDRESS ONORDER
OFFICES CITY PRICE
ONO STATE COST
YTDSALES ZIP YTDUNITS
ZMIN PHONE YTDSALES
ZMAX NOTES
ADDRESS
CITY
STATE
7IP
PHONE

Using SQL SELECT

Problems

Problems

Qi

Q2

Q3

Q4

Q5

Q6

Q7

Q8

List the company names in the CUSTOMER database that contains
the word “Computer”.

Determine how many states have at least one customer residing in
them.

List the offices (that is, OFFICE.CITY) and invoiced total for each
office, from the largest total to the smallest.

Hint: This requires joining three databases.

List the part numbers, descriptions, total units and dollars sold for
fast-moving parts, defined as those parts with more than 50 in-
voiced units.

Hint: Try the HAVING clause.

List the companies that purchased more than one “Woodyard liz-
ard,” the total number purchased, and the total amount paid.

Hint: This requires joining four databases.

List companies that have an “x” in the third position of their com-
pany name.

List company, city, and state for customers located in the same
city as one of the offices.

List descriptions of parts invoiced to customers in the state of NY.

Hint: This requires joining four databases.

Using SQL SELECT D7-3

Problems

D7-4

Q9

Qio0

Q11

Q12

Q13

Q14

Q15

Q16

For each salesman, list all sales together with the average sales of
salesmen who sold more.

Hint: The solution involves joining the SALESMAN database with
itself. Joining a table with itself is called a “self-join”.

List the pairs of part numbers and descriptions for which both
parts were invoiced to the same customer.

Hint: This query generates over 6,000 rows in the result. If you're
not careful, you’ll generate over 12,000 rows.

List the states in which at least one customer is located above 45
degrees latitude.

List the states in which all customers are located between 40 and
45 degrees latitude.

List companies with no invoices.

Hint: A subquery might be useful.

Display the largest invoice amount together with the salesman’s
name, the company to which the product was sold, the invoice
number, and the invoice date.

Hint: A subquery might be useful.

List states with no invoices.

List the states in which every customer has an invoice.

Hint: Try using two queries.

Using SQL SELECT

Problems

Q17 Given the following commission scale, calculate commissions on
the sales in INVOICES by salesman showing the salesman’s name,
total sales, and commission. Display the information in ascending
commission order.

10% 1st $5,000
9% 2nd $5,000
8% 3rd $5,000
6% above $15,000

Q18 List the salesmen whose YTD sales are more than 10% above aver-
age YTD sales.

Q19 Display the maximum distance between two customers within the
same state for each of the following states: IL, WI, IA, MO, OH, and
MI.

Hint 1: If you're an expert at celestial navigation or spherical trig-
onometry feel free to skip this hint. Otherwise, here’s a function
that calculates the distance in miles between two locations given
the latitude and longitude of each.

FUNCTION geodist
PARAMETERS latl, Ingl, lat2, 1ng2

*

* Degrees to Radian
*

latl = DIOR(latl)

Ingl = DIOR(Ingl)

lat2 = DIOR(lat2)

Ing2 = DIOR(1ng2)

x = SIN(latl)*SIN(lat2) + ;
Q0S (latl) *COS (lat2) *C0S (1ng2-1ngl)
RETURN 3959*ACOS (xX)

Hint 2. Joining CUSTOMER.DBF with itself might be helpful.
Hint 3. See the solution to Query 10.

Q20 List all customers with more than one invoice.

Using SQL SELECT D7-5

Problems

D7-6

Q21

Q22

Q23

Q24

Show the invoice number, part number and description for all
parts that appear on only one invoice.

Show all data on invoices dated between 17-May-90 and
23-May-90.

Show any offices, together with their city and state, that have
year-to-date sales exceeded by those of some individual salesman.

Show any offices, with their city and state, that have year-to-date
sales greater than those of all individual salesmen.

Using SQL SELECT

Solutions

Solutions

Q1 List the company names in CUSTOMER.DBF that contain the word
“Computer”.

Solution A

SELECT compary ;
FROM customer ;
WHERE compary LIKE "%Comouter$"

Solution B

SELECT comparty ;
FROM custorer ;
WHERE "Computer" Scomparty”

Solution C

SELECT comparty ;
FROM custarer ;
WHERE AT ("Computer", comparty) > 0

Note: Of these three techniques, only the first is available in stan-
dard SQL. The ability to use arbitrary expressions (including
UDFs) throughout a query is unique to FoxPro version 2.5 and
greatly enhances its power and ease-of-use.

Queries like these that involve searching for substrings are gener-
ally difficult to optimize and don’t execute quickly. This is particu-
larly true if memo fields are involved.

Q2 Determine how many states have at least one customer residing in
them.

Solution

SELECT COUNT (DISTINCT state) FRCOM customer

Using SQL SELECT D7-7

Solutions

D7-8

Q3

Q4

Q5

List the offices (that is, OFFICE.CITY) and invoiced total for each
office, from the largest total to the smallest.

Hint: This requires joining three databases.

Solution

SELECT offices.city, SUM(invoices.itotal) ;
FROM offices, invoices, salesman ;
WHERE invoices.salesman = salesman.salesman ;
AND salesman.ono = offices.ono ;
GROUP BY offices.ono ;
ORDER BY 2 DESCENDING

List the part numbers, descriptions, total units and dollars sold for
fast-moving parts, defined as those parts with more than 50 in-
voiced units.

Hint: Try the HAVING clause.

Solution

SELECT detail.pno, parts.descript, ;
SM(aty), SUM(gty*detail.price) ;
FROM detail, parts ;
WHERE detail.pno = parts.pno ;
GROUP BY detail.pno ;
HAVING SUM(aty) > 50

List the companies that purchased more than one “Woodyard liz-
ard,” the total number purchased, and the total amount paid.

Hint: This requires joining four databases.

Solution

SELFECT custamer.campany, SUM(detail.qty), ;
SUM (detail.qgty*detail.price) ;
FROM customer, parts, invoices, detail ;
WHERE custamer.cno = irnvoices.cno ;
AND invoices.ino = detail.ino ;
AND detail.pno = parts.pno ;
AND parts.descript = "Woodyard lizard" ;
GROUP BY custarer.cno ;
HAVING SUM(detail.qty) > 1

Using SQL SELECT

Solutions

Q6 List companies that have an “x” in the third position of their com-
pany name.

Solution A

SELECT camparty ;
FROM custaorer ;
WHERE campary LIKE "__x%"

Solution B

SELECT comparly ;
FROM custorer ;
WHERE SUBSIR (companty, 3, 1) = "x"

Note: Only Solution A is available in other SQL implementations.

Q7 List company, city, and state for customers located in the same
city as one of the offices.

Solution

SELFCT customer.campany, custorer.city, custamer.state ;
FROM customer, offices ;
WHERE custarer.city = offices.city ;
AND custamer.state = offices.state

Q8 List descriptions of parts invoiced to customers in the state of NY.

Hint: This requires joining four databases.

Solution

SELRCT DISTINCT parts.descript ;
FROM parts, customer, invoices, detail ;
WHERE customer.cno = invoices.cno ;
AND invoices.ino = detail.ino ;
AND detail.pno = parts.pno ;
AND customer.state = "NY"

Using SQL SELECT D7-9

Solutions

D7-10

Q9

Q10

Q11

For each salesman, list all sales, together with the average sales of
salesmen who sold more.

Hint: The solution involves joining SALESMAN.DBF with itself,
Joining a database with itself is sometimes called a “self-join”.

Solution

SELECT a.salesman, a.name, a.ytdsales, AVG(b.ytdsales) ;
FROM salesman a, salesman b ;
WHERE a.ytdsales < b.ytdsales ;
GROUP BY a.salesman

Note: Don'’t try this on a large database. You'll generate lots of
output.

List the pairs of part numbers and descriptions for which both
parts were invoiced to the same customer.

Hint: This query generates over 6,000 rows in the result. If you're
not careful, you'll generate over 12,000 rows.

Solution

SELECT al.pno, al.descript, a2.pno, a2.descript ;
FROM parts al, parts a2, invoices bl, invoices b2, ;
detail cl, detail <2 ;
WHERE bl.ino = cl.ino AND cl.pno = al.pno ;
AND b2.ino = c2.ino AND c2.pno = a2.pno ;
AND bl.cno = b2.cno ;
AND al.pno < a2.pno

Note: The trick that keeps the output down to 6,000 rows is the
last line of the query that prevents selecting each pair of parts
twice. Without it, each pair of parts (x,y) would be selected again
as (y,x).

List the states in which at least one customer is located above 45
degrees latitude.
Solution

SELECT DISTINCT state ;
FROM custamer ;
WHERE lat > 45

Using SQL SELECT

Solutions

Q12 List the states in which all customers are located between 40 and
45 degrees latitude.

Solution A

SELECT DISTINCT state FROM custarer ;
WHERE state NOT IN ;
(SELECT state FROM custamer ;
WHERE lat < 40 COR lat > 45)

Solution B

SELECT state FROM custarer ;
GROUP BY state ;
HAVING 40 <= MIN(lat) AND MAX({lat) <= 45

Note: Two different solutions are shown above. However, Solution
B executes over twice as fast as Solution A because it doesn’t in-
volve a subquery.

Q13 List companies with no invoices.

Hint: A subquery might be useful.

Solution A

SELECT compary ;
FROM custamer ;
WHERE cno NOT IN ;
(SELECT cno FROM invoices)

Solution B

SELECT comparly ;
FROM customer ;
WHERE NOT' EXISIS ;
(SELECT * ;
FROM invoices WHERE invoices.cno = custamer.cno)

Note: You can reformulate queries that use EXISTS as equivalent
queries that use IN or other clauses.

Whether you use EXISTS or IN is a matter of taste and style; use
whichever seems natural. However, sometimes performance differ-
ences occur, especially if you can reformulate a query by eliminat-
ing subqueries.

Using SQL SELECT D7-11

Solutions

Q14 Display the largest invoice amount together with the salesman’s
name, the company to which the product was sold, the invoice
number, and the invoice date.

Hint: A subquery might be useful.

Solution

SELECT salesmen.name, customer.conparly, invoices.ino, ;
invoices.idate, invoices.itotal ;
FROM salegman, invoices, custamer ;
WHERE salesman.salesman = involces.salesman ;
AND invoices.cno = custamer.cno ;
AND invoices.itotal = ;
(SELECT MAX (itotal) FROM invoices)

Q15 List states with no invoices.

Solution A

SELECT DISTINCT state FROM custamer;
WHERE state NOT IN ;
(SELECT customer.state ;
FROM customer, invoices ;
WHERE invoices.cno = customer.cno)

Solution B

SELECT DISTINCT cc.state FROM customer cc;
WHERE NOT' EXISIS ;
(SELECT * ;
FROM customer, invoices ;
WHERE invoices.cno = customer.cno ;
AND customer.state = cc.state)

Note: This example again illustrates that you can formulate a
query using either IN or EXISTS, whichever seems most natural.

About Solution A — The DISTINCT clause is not required. If you're
testing whether a value is IN a set, it doesn’t matter how many
repetitions of the value are in the set. Therefore, DISTINCT is im-
plicit in subqueries associated with IN.

About Solution B — Why is “*” in the subquery select list for this
query? The answer is that you're only interested in whether any
rows exist; it doesn’t matter which fields are in the rows.

Solution A and B are equally efficient.

D7-12 Using SQL SELECT

Solutions

Q16 List the states in which every customer has an invoice.

Hint: Try using two queries.

Solution

SELECT DISTINCT state ;
FROM customer ;
WHERE cno NOT IN ;
(SELECT cno FROM invoices) ;
INTO CURSOR cC

SELFECT DISTINCT state ;
FROM custorer ;
WHERE state NOT IN ;
(SELECT state FROM cc)

Note: The first of the two queries selects all states that include at
least one customer without an invoice.

The second query selects states appearing in CUSTOMER.DBF that
are not among the states selected in the first query.

Q17 Given the following commission scale, calculate commissions on
the sales in INVOICES by salesman, showing the salesman’s name,
total sales, and commission. Display the information in ascending
commission order.

10% 1st $5,000
9% 2nd $5,000
8% 3rd $5,000
6% above $15,000

Using SQL SELECT D7-13

Solutions

Q18

D7-14

Solution

SELECT name, SUM(itotal), camiss(SUM(itotal)) ;
FROM invoices, salesman ;
WHERE invoices.salesman = salesman.salesman ;
GROUP BY name ;
ORCER BY 3

where “commiss” is the following function:

FUNCTION camiss

PARAMETER sales

PRIVATE c

c = MIN(sales, 5000) * 0.10

sales = MAX (0, sales-5000)

Cc = Cc + MIN(sales, 5000) * 0.09
sales = MAX(0, sales-5000)

C = C + MIN(sales, 5000) * 0.08
Cc = c + MAX(0, sales-5000) * 0.06

RETURN ROOND(c, 2)

Note: This query illustrates the usefulness of permitting arbitrary
expressions and user-defined functions (UDFs) in queries.

List the salesmen whose YTD sales are more than 10% above aver-
age YTD sales.

Solution

SELECT salesman, name FROM salesman ;
WHERE ytdsales > ;
(SELECT AVG(ytdsales)*1.10 FROM salesman)

Using SQL SELECT

Solutions

Q19 Display the maximum distance between two customers within the
same state for each of the following states: IL, WI, 1A, MO, OH, and
MI.

Hint 1. If you're an expert at celestial navigation or spherical trig-
onometry feel free to skip this hint. Otherwise, here’s a function
that calculates the distance in miles between two locations given
the latitude and longitude of each.

FUNCTION geodist
PARAMETERS latl, Ingl, lat2, 1ng2

*

* Degrees to Radian
*

latl = DIOR(latl)

Ingl = DIOR(Ingl)

lat2 = DIOR(lat2)

1ng2 = DIOR(1ng2)

x = SIN(latl)*SIN(lat2) + ;
COS (latl1) *C0S (lat2) *COS (1lng2-1ngl)
RETURN 3959*ACOS (x)

Hint 2. Joining CUSTOMER.DBF with itself might be helpful.
Hint 3. See the solution to Query 10.

Solution

SELECT a.state, MAX(geodist (a.lat, a.long, b.lat, b.long)) ;
FROM customer a, customer b ;
WHERE b.zip < a.zip ;
AND b.state = a.state ;
AND a.state IN ("IL","wI","IA","MO","OH","MI");
GROUP BY a.state :

Q20 List all customers with more than one invoice.

Solution A

SELECT DISTINCT cno;
FROM invoices ;
WHERE EXISTS ;
(SELECT * FROM invoices 12 ;
WHERE invoices.cno = 12.cno ;
AND invoices.ino <> 12.ino)

Using SQL SELECT D7-15

Solutions

Q21

D7-16

Solution B

SELECT cno ;
FROM invoices ;
GROUP BY cno ;
HAVING COUNT (ino) > 1

Note: Solution A uses EXISTS and a subquery, whereas Solution B
uses just one level of query. Solution B is simpler.

Show the invoice number, part number and description for all
parts that appear on only one invoice.

Solution A

SELECT invoices.ino, detail.pno, parts.descript ;
FROM invoices, detail, parts ;
WHERE invoices.ino = detail.ino ;
AND detail.pno = parts.pno ;
AND NOT' EXISTS ;
(SELECT * ;
FROM detail A2 ;
WHERE detail.pno = d2.pno ;
AND detail.ino <> d2.1ino)

Solution B

SELECT detail.ino, detail.pno, parts.descript ;
FROM detail, parts ;
WHERE detail.pno = parts.pno ;
GROUP BY detail.pno ;
HAVING COUNT(DISTINCT detail.ino) = 1

Note: You can perform this query in at least two ways: the first
uses a subquery, and the second does not. Consequently, the sec-
ond is simpler and executes faster.

In Solution B, the DISTINCT modifier in COUNT is necessary to deal
with a part that appears on an invoice several times.

Using SQL SELECT

Solutions

Q22 Show all data on invoices dated between 17-May-90 and
23-May-90.
Solution

SELECT * FROM invoices ;
WHERE idate BEIWEEN {05/17/S90} AND {05/23/90}

Note: This exercise illustrates the use of the BETWEEN operator.

Q23 Show any offices, together with their city and state, that have
year-to-date sales exceeded by those of some individual salesman.

Solution

SELECT ono, city, state ;
FROM offices ;
WHERE ytdsales < ANY ;
(SELECT ytdsales FROM salesman)

Note: This exercise illustrates use of the ANY quantifier.

Q24 Show any offices, with their city and state, that have year-to-date
sales greater than those of all individual salesmen.

Solution

SELECT ono, city, state ;
FROM offices ;
WHERE vytdsales > ALL ;
(SELECT ytdsales FROM salesman)

Note: This exercise illustrates use of the ALL quantifier.

Using SQL SELECT D7-17

8 ReEort Variable Hints

With Report Writer variables, most user-defined functions (UDFs)
are no longer necessary.

Report variables allow you to do calculations that can be used in
subsequent calculations. This means that, without actually
writing any code, you can include information in your report that
previously would have required writing a UDF. And once you
define variables, it is easy to use them in subsequent calculations.

For example, if you wanted to make a time sheet report, you could
define a variable ARRIVE with the following expression:

hour_in + (min_in / 60)
Another variable, LEAVE would contain a similar expression:
hour_out + (min_out / 60)

A third variable, DAYTOTAL could hold the total amount of hours
worked during the day. Assign it the following expression:

leave - arrive

This third variable could be used in a variety of other calculations
to determine the number of hours worked in a week, a month, a
year, the average number of hours worked each day, and so on.

Report Variable Hints D8-1

Report Variable Do’s and Don’t’s

Report Variable Do’s and Don’t’s

D8-2

When setting up report variables, remember the following:

The order in which the variables are initialized is important.
If varl is used to define the value of var2, varl must be
precede var2 in the list in the Report Variables dialog so that
varl will be evaluated first. In the previous time sheet
example, ARRIVE and LEAVE would have to precede DAYTOTAL
in the list of variables.

The initial value of the variable is important. A default value
of 0 is assigned if no other value is specified. In situations in
which you are multiplying the variable in calculations, be sure
to avoid a division by zero error.

When the variable is reset is important. By default, variables
are reset at the end of the report. If your calculations are
dependent upon data grouping, make sure that you select the
proper group from the Reset popup.

If you reorder the groups in your report, your report variables
may no longer be resetting on the correct field. For example,
if an outer group is set to STATE and an inner group is by
DATE, inverting the order of these groups would affect the
variables that are reset according to the original positions of
the groups.

Report variables can be used to calculate selected information
from a database. For example, if you wanted to count all the
companies in a certain state in your report, you could create a
variable with an expression similar to the following and then
choose Sum in the Variable Definition dialog:

IIF(state="CA",1,0)

Report Variable Hints

9 Arraxs

Arrays

FoxPro supports one- and two-dimensional memory variable ar-
rays. An array is a collection of variables with a common name.
Each item in the array is an element that you can reference by its
row and column subscripts. Subscripts are numbers or numeric
expressions that specify the location of an element in the array.

Each array element can contain any type of data (character, nu-
meric, date or logical) and is initialized to a logical false (.F.) when
the array is created.

This chapter covers:
® (Creating arrays
® FoxPro array functions
® Manipulating arrays
® Public and private arrays
® Passing entire arrays to user-defined functions
® Transferring data between arrays and databases
® Arrays and SQL SELECT

® Arrays and FoxPro controls

D9-1

Creating Arrays

Creating Arrays

To create an array, use the DIMENSION or DECLARE command.
These commands are identical, so you can use them interchange-
ably. For details about the commands, refer to the FoxPro
Language Reference.

Several FoxPro commands and functions store results to an array.
If the array you specify doesn’t exist, the following commands and
functions automatically create the array:

ACOPY() CALCULATE
ADIR() COPY TO ARRAY
AFIELDS() SCATTER
APPEND FROM ARRAY SQL SELECT
AVERAGE SUM

Array names can include up to 10 characters, consisting of alpha-
betic characters, underscores, and numbers. An array name can-
not begin with a number or contain embedded spaces.

underscore, avoid using an underscore as the first character

0 Because FoxPro system memory variables begin with an
of an array name.

To create a one-dimensional array, include one subscript that spec-
ifies the number of rows in the array.

To create a two-dimensional array, include a pair of subscripts: the
first subscript designates the number of rows in the array, and the
second subscript specifies the number of columns. Array subscripts
always start at one.

D9-2 Arrays

Arrays

Creating Arrays

The following examples create a one-dimensional array named
DEPTNUMBER consisting of ten rows and a two-dimensional array
named TAXRATES consisting of ten rows and five columns:

DIMENSION deptrnurioer (10)
DIMENSION taxrates(10,5)

You can create several arrays using a single DIMENSION or
DECLARE command. For instance, the following command creates
the arrays described in the previous example:

DIMENSION deptnumber (10), taxrates(10,5)

D9-3

FoxPro Array Functions

FoxPro Array Functions

FoxPro supports a variety of functions for manipulating arrays.
The following table lists these functions and their uses.

Function Description

ACOPY() Copies a series of elements from one
array to another.

ADEL() Deletes an element, row, or column from
an array.

ADIR() Places matching file information into an
array.

AELEMENT() Returns an array element§ number from
its row and column subscripts.

AFIELDS() Places database structure information
into an array.

AINS() Inserts an element, row, or column into
an array.

ALEN() Returns t.;he number of elements, rows, or
columns in an array.

ASCAN() Searchgs a memory variable array for an
expression.

ASORT() Sorts a memory varla}ble array in
ascending or descending order.

ASUBSCRIPT() Returgs an element’s row (Zr column
subscript from the element’s number.

For further information about these functions, refer to the FoxPro
Language Reference.

D9-4 Arrays

Manipulating Arrays

Manipulating Arrays

This section describes how to initialize an entire array, how to ini-
tialize individual elements, and how to change the size or dimen-
sions of an array.

Initializing Entire Arrays

You can initialize every array element to the same value by issu-
ing the STORE command or by using the = operator. When
COMPATIBLE is set to OFF or FOXPLUS (the default setting), and
you include the name of an array (without subscripts) in STORE or
=, every element in the array is initialized to the same value.

In the following example, every element in the array named
EPSILON is initialized with the value “foo”.

SET COMPATTIBLE OFF
DIMENSION epsilon(2,3)
STORE ‘foo’ TO epsilon
DISPLAY MEMORY LIKE epsilon

If COMPATIBLE is set to ON or DB4, as in the next example, the
array is released from memory, a single memory variable with the
array’s name is created, and this variable is assigned the value.

SET COMPATTBLE ON
DIMENSION epsilon(2,3)
STORE ‘' foo’ TO epsilon
DISPLAY MEMORY LIKE epsilon

Referencing Array Elements

Arrays

You can reference an array element by its element number or by
its row and column subscripts. The first subscript specifies the
row location of an element, and the second subscript specifies the
column location.

For example, the subscripts 1,1 specify the element in the first row
and first column of an array. The subscripts 2,5 specify the ele-
ment in the second row and fifth column of an array.

D9-5

Manipulating Arrays

In one-dimensional arrays, an element’s number is equal to its row
subscript. In two-dimensional arrays, an element’s number is de-
termined by counting along rows. For example, suppose you create
the following 3-by-3 array:

abec
def
ghi

The element numbers for a, b, and ¢ are 1, 2, and 3. The element
numbers for d, e and f are 4, 5, and 6, and so on.

Two frequently used array functions are AELEMENT() and
ASUBSCRIPT():

¢ AELEMENT() returns an element’s number when given its row
and column subscripts.

® ASUBSCRIPT() returns the row or column subscript when
given an element’s number.

Assigning Values to Array Elements

D9-6

Using the STORE command or = operator, you can assign values to
array elements. You can assign different values to array elements,
or you can assign the same value to each array element.

To assign a value to one array element, specify the element’s sub-
script (one-dimensional array) or subscripts (two-dimensional
array). In the following examples, STORE and = assign the values
A through F to the array elements in the arrays named ALPHA and
BETA.

DIMENSION alpha(2,3
STORE 'A’ TO alpha(
STORE ‘B’ TO alpha(
STCRE 'C’ TO alpha(
STORE ‘D’ TO alpha(
STORE ‘E’ TO alpha(
STORE 'F’ TO alpha(

v
[T R T TR
g

DISPLAY MEMORY LIKE alpha
DISPLAY MEMORY LIKE beta

Arrays

Manipulating Arrays

Additionally, you can assign values to elements by using their ele-
ment numbers, as shown in the following example:

STORE 'A’ TO garmma (
STORE 'B’ TO garmma (
STORE 'C’ TO gamma (
STCRE ‘D’ TO gamma (
STORE 'E’ TO gamma (
STORE 'F’/ TO gamma (

DISPLAY MEMORY LIKE gamme

Redimensioning Arrays

Arrays

You can change the size and dimensions of an array by using
DIMENSION or DECLARE. With these commands, you can increase
or decrease an array’s size, convert a one-dimensional array to two
dimensions, and reduce a two-dimensional array to one dimension.

When you increase the number of elements in an array, the con-
tents of all elements in the original array are copied in element
order to the newly-redimensioned array, and the additional array
elements are initialized to a logical false (.F.).

You can remove specific rows or columns from an array by using
ADEL(). When you decrease the number of elements, the array is
truncated in element-number order.

D9-7

Public and Private Arrays

Public and Private Arrays

Arrays, like memory variables, can be public or private.

Public Arrays

O

A public array is available to any program during the FoxPro ses-
sion and is accessible from the Command window. To declare an
array as public, use the PUBLIC command.

Arrays created in the Command window are public automatically.

If you try to declare an array PUBLIC after the array is
created, an error message appears.

Private Arrays

O

D9-8

PRIVATE hides an array in a higher level program from the cur-
rently executing program and called programs, allowing you to use

an array having the same name in your currently-executing pro-
gram.

Once the currently executing program containing the private array
declaration finishes executing, you can access the array having the
same name in the higher level program.

Unlike PUBLIC, PRIVATE cannot create an array; it only
hides arrays declared in higher level programs from the
current program or routine.

Arrays

Public and Private Arrays

The following example creates and initializes a public array named
MYARRAY.

SET TALK OFF

CLEAR MEMORY

CLFAR

PUBRLIC myarray(l,2) <——————— Create a public array.
STORE ‘main’ TO myarray <«———— Store a value to the array.

? 'Main program’

DISPLAY MEMCRY LIKE nmyarray <— Show the contents of the array.
2

DO this ' Execute a lower level procedure.
? 'Main program again’
DISPLAY MEMORY LIKE nyarray <— Contents of the array — no change!

PROCEDURE this Lower level procedure

PRIVATE nmyarray Same array name as main. Declare it private.
DIMENSION myarray (1,1) <———— Different size array

SIORE ‘this’ TO nyarray «———— Store a value to the array.

? 'Lower level procedure’ «——— Show the contents of both arrays.
DISPLAY MEMORY LIKE myarray

STORE ‘this again’ TO myarray
? ‘Lower level again’ Change the array contents.

DISPLAY MEMORY LIKE nyarray <— Show the contents of both arrays.
2

RETURN Return to the main program.

Array Limitations

You can create up to 3,600 arrays. In FoxPro (X), the Extended
version of FoxPro, each array can have a maximum of 65,000 ele-
ments. In the Standard version of FoxPro, each array can have a
maximum of 3,600 elements.

The number of arrays and elements you can create might be lim-
ited by the available memory in your computer.

Arrays D9-9

Passing Entire Arrays to User-Defined Functions

Passing Entire Arrays to User-Defined Functions

You can pass an entire array to a procedure or user-defined func-
tion (UDF). To pass an entire array, you pass it by reference, mean-
ing that the UDF can change the array in the calling program.

To pass an entire array by reference to a UDF, you must set
UDFPARMS to REFERENCE or preface the array name with an AT
symbol (@).

If UDFPARMS is set to VALUE or the array name is in parentheses,
only the first array element is passed to the UDF, and it is passed
by value. (VALUE is the default.)

The following sample program creates a three-element array
named MULTIPLY. The entire array is passed to a UDF called
PRODUCT that multiplies the first array element by the second ele-
ment and then puts the result in the third array element.

After the PRODUCT routine is executed the MULTIPLY array is dis-
played. Because the array was passed by reference, changes made
by PRODUCT to the array are made to the MULTIPLY array in the
calling program.

DIMENSTION multiply (

3 Create an array.
STCRE 2 TO multiply (

(

(

)

1) «——o—— Multiplicand
STORE 4 TO multiply (2) ————on— Multiplier
SIORE 0 TO multiply(3) «———o Product
= product (émultiply) «———— Do the product routine with entire array.

DISPIAY MEMORY LIKE multiply «——— Display the contents of the array.

PROCEDURE. product Routine called by the program.
PARAMETER localarray LOCALARRAY references MULTIPLY array.
localarray (3) = localarray(l) * localarray(2) Product

When you DO a program and pass an array to the program using
the WITH clause, the array is passed by reference unless you en-
close it in parentheses. The setting of UDFPARMS does not affect
the DO WITH list.

D9-10 Arrays

Transferring Data Between Arrays and Databases

Transferring Data Between Arrays and Databases

The following FoxPro commands help you transfer data from a
database to an array:

SCATTER transfers data from a single database record to an
array.

COPY TO ARRAY transfers data from a series of records to an
array.

SQL SELECT can transfer the results of a query to an array.
(For details about SQL SELECT, refer to the chapter titled Using
SQL SELECT in this manual.)

SCATTER and COPY TO ARRAY differ in the following respects:

SCATTER transfers data from the current record in the current
database. COPY TO ARRAY can transfer data from multiple
records in the current database.

SCATTER'S BLANK option automatically creates an array
having elements the same size and type as the fields in the
database, but the array elements are empty.

SCATTER'S MEMVAR option automatically creates a set of
memory variables having the same size, type and name as the
fields in the database.

The following FoxPro commands help you transfer data from an
array to a database:

Arrays

GATHER transfers data from an array to a single database
record.

APPEND FROM ARRAY adds new records to a database and fills
the records with data from an array.

SQL INSERT appends a single new record to a database and
fills the record with data from an array.

D9-11

Transferring Data Between Arrays and Databases

GATHER, APPEND FROM ARRAY, and SQL INSERT differ in the follow-
ing respects:

® GATHER transfers data from an array to the current record in
the current database. Additionally, GATHER’'S MEMVAR option
transfers data from a set of memory variables to the current
database record.

® APPEND FROM ARRAY appends new records to the end of the
current database then transfers data from the array to the
newly-appended records.

® SQL INSERT appends a new record then transfers data from
the array to the newly-appended record. Unlike GATHER and
APPEND FROM ARRAY, SQL INSERT can append a record in an
unselected database (a database open in a work area other
than the current work area).

~ APPEND FROM ARRAY or SQL INSERT performs faster than
& APPEND BLANK followed by REPLACE, especially on a net-
= work.

For more information about transferring data between arrays and
databases, refer to the descriptions of these commands in the
FoxPro Language Reference.

D9-12 Arrays

Arrays and SQL SELECT

Arrays and SQL SELECT

SQL SELECT is a versatile command for querying databases and can
direct query results to an array.

To send SQL SELECT query results to an array, specify the INTO
ARRAY clause with an array name. If the array doesn’t exist, it is
automatically created. If the array does exist, it is redimensioned
automatically to accommodate the query results.

In the following example, SQL SELECT directs its query results to
an array named RESULTS:

SELFECT DISTINCT a.cust_id, a.corpany, b.amount ;
FROM customer a, payments b ;
WHERE a.cust_id = b.cust_id INTO ARRAY results

DISPLAY MEMORY LIKE results

RESULTS Priv A TEST
(1, 1) C *000004"
(1, 2) C ”stylistic Inc."
(1, 3) N 13.91 (13.91000000)
(2, 1) C “000008"
(2, 2) C “Ashe Aircraft"
« 2, 3) N 4021.98 (4021.98000000)
¢ 3 1 Cc ~000010"
(3, 2) C “Miakonda Industries"
(3, 3) N 9.84 (9.84000000)

For more information about SQL SELECT, refer to the chapter Using
SQL SELECT earlier in the manual and to the description of SQL
SELECT in the FoxPro Language Reference.

Arrays D9-13

Arrays and FoxPro Controls

Arrays and FoxPro Controls

From arrays, you can create menu options or list items. To create
menu options, use the @ ... GET — Popups command, and to create
list items use the @ ... GET — Lists command. For details about
these commands, refer to the FoxPro Language Reference.

Because menus and lists use arrays, you can change lists and
menus dynamically. For example, by modifying an array, you can
insert or remove menu options or list items. You can display the
new menu options or list items by using the SHOW GET or SHOW
GETS commands.

The following code snippet shows how to create a list from an
array. In the example, first you create an array of five elements
and sort it in ascending order using the ASORT() function. Then
you create a list and use the elements of the array to create the
options in the list.

CLEAR

SET TALK OFF

STORE 1 TO mchoice The first option is selected.
DIMENSION scrollarray (5) The array that creates the options.
STORE ‘2Apples’ TO scrollarray (1) «— First option.

STORE ‘Bananas’ TO scrollarray (2) «— Second option.

STORE ‘Limes’ TO scrollarray (3)

STORE ’Strawberries’ TO scrollarray (4)

STORE ' Lemons’ TO scrollarray (5)

=ASORT (scrollarray) Sort the array in ascending order.

@2,2 GET mchoice FROM scrollarray ; <— Create the list from the array.

SIZE 7,20 VALID scrollproc() «—— When an option is selected from the
list, execute SCROLLPROC.

READ Activate the list.
PROCEDURE. scrollproc :l;h;;ﬁ::tes when an option
@12,18 CLEAR : .

@12,2 SAY ‘Your selection: ’
@12,18 SAY scrollarray (mchoice) «——— Display the selected option.
RETURN .T.

D9-14 Arrays

Arrays and FoxPro Controls

Here is how the list looks after an option is chosen from it:

Apples
Lemons

Limes
Strauberries

Your selection: Bananas

Arrays D9-15

10 Low-Level File Ineut/OutBut

FoxPro provides powerful low-level file functions that you can use
to manipulate any type of file. Using these functions, you can cre-
ate, open, read from and write to a file in any format. (The file
does not have to be in FoxPro format.)

These low-level functions help you in other ways. They provide
access to your computer’s communication ports, and they are fast
because they use the highly optimized input/output (I/0) routines
that FoxPro provides.

Be careful when using low-level file functions, especially
when you are manipulating files containing valuable data.
Thoroughly test programs containing low-level functions on
sample or backup data before using the programs with
valuable data.

The following table lists the low-level functions and their uses.
For more information about these functions, refer to the FoxPro
Language Reference.

Function Use ‘ Returns

The final file size
FCHSIZE() | Changes the size of a file. if successful,
otherwise -1.

Closes a file opened with .T. if successful,

FCLOSEC) | pCREATE() or FOPEN(). otherwise .F.

The file handle
FCREATE() | Creates and opens a file. | if successful,
otherwise -1.

Determines if the file
FEOF() pointer is positioned at the .T. or .F.
end of a file.

Low-Level File Input/Output D10-1

D10-2

Function Use Returns
Determines the success of The error number
FERROR() | the last low-level file or 0 if no error
function. occurred.
Flushes a buffered file to .T. if successful,
FFLUSHC) disk. otherwise .F.
Returns a series of bytes
FGETS() from a file or a Data from the file.
communications port.
Opens a file or a The file handle if
FOPEN() communication port for successful,
low-level use. otherwise -1.
Writes a character string, The number of
carriage return and line bytes written if
FPUTSC) feed to a file or a successful,
communication port. otherwise 0.
Returns a specified
FREAD() number of bytes from a file glita from the
or a communication port. ’
The file pointer
Moves the file pointer in a position relative
FSEEK() file. to the beginning
of the file.
The number of
Writes a character string bytes written to
FWRITE() | toafileora the file if
communication port. successful,

otherwise 0.

Low-Level File Input/Output

Creating Files

Creating'Files

FCREATE() creates a new file and opens the file for use.

If you try to create a file using the name of a file that
already exists, the existing file is overwritten without
warning. To prevent the overwriting of an existing file, use
FILE() to see if the file exists. If the file exists, you can

open it with FOPEN().

If FCREATE() creates the file successfully, it returns a unique nu-
meric handle to identify the file. You should store the handle to a
memory variable so that you can identify the file in other low-level
functions. FCREATE() returns -1 if it cannot create the file.

FCREATE() supports optional numeric arguments that specify the
MS-DOS attributes of the file you create. The following table lists
these arguments and their corresponding MS-DOS attributes.

File Attributes
A’:‘é:‘nﬁ:g . File Attributes
0 Read/Write (default)
1 Read-Only
2 Hidden
3 Read-Only/Hidden
4 System
5 Read-Only/System
6 System/Hidden
7 Read-Only/Hidden/System

Low-Level File Input/Output D10-3

Creating Files

D10-4

If you open a file having the read-only attribute, you can retrieve
data from the file, but you cannot modify it. When you open a file
having the read/write attribute, you can retrieve data from the file,
and you can write to or modify it. For additional information
about file attributes, consult your MS-DOS manual.

For instance, to create the file SAMPLE.TXT with read-only/hidden
attributes and save the file handle to a memory variable named
SAMPLEHAND, use the following:

samplehand = FCREATE(’sample.txt’, 3)

You cannot open communication ports using FCREATE because
FCREATE() returns -1 when the name of a port is included.

Low-Level File Input/Output

Opening Files and Ports

Opening Files and Ports

FOPEN() opens an existing file or a communication port. If the
specified file or port is opened successfully, its handle is returned;
if the file or port cannot be opened, -1 is returned.

You can specify the read/write privileges and the buffering scheme
for the file or port by including one of the following optional nu-
meric arguments in FOPEN().

I{‘: ;T;Z::\t Privileges Buffering Scheme
0 Read-Only (default) Buffered
1 Write-Only Buffered
2 Read/Write Buffered
10 Read-Only Unbuffered
11 Write-Only Unbuffered
12 Read/Write | Unbuffered

When you open a file with buffering, all or part of the file is stored
in memory so that it can be accessed many times faster.

Because a buffered file resides in memory, the version on disk is
not always current. To ensure that the current version of a file
resides on disk, open the file without buffering. Whenever an un-
buffered file is modified, it is written to disk. Always open commu-
nication ports without buffering.

The following command opens the file SAMPLE.TXT with read/write
privileges and buffering, and then stores the file handle to the
memory variable SAMPLEHAND:

sanplehand = FOPEN(’sample.txt’, 2)

Low-Level File Input/Output D10-5

Opening Files and Ports

Sharing Files on a Network

On a network, you can share files opened with read-only privileges
by using FCREATE() and FOPEN(). However, you cannot share
files opened for exclusive use that have write or read/write privi-
leges.

File Pointer

When a file is open, a file pointer designates the current byte in
the file. This file pointer is similar to a database’s record pointer
— the record pointer designates the current record in the
database.

The file pointer is always on the first byte when you open a file
using FCREATE() or FOPEN(). You can move the pointer using
FGETS(), FPUTS(), FREAD() and FWRITE(); you can move it to a
specific position in the file by using FSEEK().

A communication port does not have a file pointer. Data is se-
quentially read from or written to a port.

Reading from Files and Ports

D10-6

When a file or port is open, you can read data from the file or port
using FREAD() and FGETS(). Include the handle of the file or port
in FREAD() or FGETS().

FREAD() Returns a specified number of bytes from a file or
port. Data returned from a file starts at the current
file pointer position. The specified number of bytes
are returned from a port.

FGETS() Returns a specified number of bytes from a file or port
until a carriage return is encountered. When FGETS()
encounters a carriage return, it stops returning data
from the file and positions the file pointer on the byte
immediately following the carriage return. By de-
fault, FGETS() returns 254 bytes from the file if no
carriage return is encountered. You can specify a
number of bytes other than 254. FGETS() ignores line
feeds.

Low-Level File Input/Output

Opening Files and Ports

FREAD() sequentially returns data from a file or port, whereas
FGETS() returns a series of lines from a file. Because many files
use a carriage return to specify the end of a line, FGETS() is pref-
erable to FREAD() for retrieving data from files in this format.

FPUTS() places a carriage return at the end of each line it writes
to a file. If you use FPUTS() with FGETS(), you can write to and
read from a file line by line.

The following example demonstrates how you can use FGETS() to
return individual lines from a file.

CLOSE ALL

SELECT 0

USE customer Open the CUSTOMER database.
SIORE RECSIZE() TO recordlen «———— The record size can be > 254.
COPY TO custteamp.txt DELIMITED WITH BLANK <— Delimited file.

STORE FOPEN (’custtamp.txt’) TO custhandle «— Open the delimited file.

TIF custhandle < 0 Can’t open the file.
WATT ‘Carmot open the file. Press a key to exit.’ WINDOW
CANCEL Exit this program.

ENDIF

CLEAR

DO WHILE NOT FEOF (custhandle) Loop through the entire file.
@6,2 SAY FGETS(custhandle, recordlen) <— Retrieve a line.
WAIT ‘Press a key to see the next record.’ WINDOW
CLEAR

ENDDO

= FCLOSE (custhandle) Close the delimited file.

Low-Level File Input/Output D10-7

Opening Files and Ports

Writing to Files and Ports

The FWRITE() and FPUTS() functions write to a file or port opened
with write privileges. Include the handle of the file or port in
FWRITE() or FPUTS().

FWRITE() Writes a specified number of bytes to a file or port.
When FWRITE() writes to a file, writing begins at the
current file pointer position. The specified number of
bytes are sent to a communication port.

FPUTS() Writes a specified number of bytes to a file or port as
FWRITE() does, except that each line written automat-
ically terminates with a carriage return and line feed.
If you use FPUTS() in conjunction with FGETS(), you
can read and write a series of lines.

Closing Files and Ports

D10-8

To preserve the integrity of data written to and read from a file or
port, you must close the file or port properly. To close a file
opened with FCREATE() or FOPEN(), include the file’s handle in
FCLOSE(). If the file is closed properly, FCLOSE() returns .T., and
the file handle is released.

You can also use CLOSE ALL to close all files opened with
FCREATE() or FOPEN(). However, CLOSE ALL closes all file types in
all work areas, all program and text files, and certain FoxPro sys-
tem windows.

Exiting FoxPro with QUIT also closes files opened with FCREATE()
or FOPEN().

Low-Level File Input/Output

Additional Commands and Functions for Low-Level I/O

Additional Commands and Functions for Low-Level I/O

Other Useful Functions

Several other low-level functions are useful for manipulating files:

FCHSIZE() Changes the size of a file opened with write privi-

FEOF()

leges. For example, you can use FCHSIZE() to truncate
a file to length 0.

Returns a true value (.T.) if the file pointer is at the
end of a file. FEOF() always returns true if you spec-
ify a port.

FERROR() Determines the success of the last low-level file func-

FFLUSH()

FSEEK()

tion executed. FERROR() returns 0 if the previous
low-level function executed successfully, and it re-
turns a non-zero number if an error occurred. This
function is useful in error handling routines.

Flushes the buffered portions of a file to disk. Files
opened with buffering are stored in memory to in-
crease performance. Flushing the buffers to disk en-

sures that the current version of the file resides on
disk.

Moves the file pointer within a file. FSEEK() has no
effect on ports.

HEADER() Returns the size of a database file’s header. You can-

not use HEADER() with a database opened with
FCREATE() or FOPEN(), but you can use the value re-
turned by HEADER() with FSEEK() to position the file
pointer on the first byte of the first field and record in
a database.

Useful Commands
DISPLAY STATUS and LIST STATUS return the following information

about open

files and ports:

® The drive, directory and file name for each open file

¢ The handle number of each open file and port

® The file pointer position in each open file

® The Read/Write attributes of each file and port

Low-Level File Input/Output D10-9

Low-Level Access to Communication Ports

Low-Level Access to Communication Ports

You can use FoxPro low-level file functions to access communica-
tions ports such as COM1 and COM2. By gaining access to ports,
you can read from or write to modems and external devices.

Before you access a port, you must initialize it using the MS-DOS
MODE command. MODE specifies the parameters (baud rate, par-
ity, data bits, stop bits and retries) for the port. You can execute
MODE before starting FoxPro, or you can issue RUN MODE in the
Command window or within a program.

The following code snippet illustrates how to dial a phone number
by modem from within FoxPro. This example uses standard
Hayes™ modem commands to initialize the modem, dial the num-
ber and hang up the modem. Because of differences among mo-
dems and phone systems, this program might require changes to
work properly for you.

SET ESCAPE ON

STORE ‘5551212’ TO phonenumber The number to dial.

RUN MODE COM2:1200,N, 8,1 Initialize the COM2 port.

modemhandl = FOPEN(/COM2’,12) Open the COM2 port.

IF FERROR() # O Can’t open COM2.
WATT ’‘Carmot open COM port. Press ary key to exit.’ WINDOW
RETURN

ENDTF

= FPUTS (moderhandl, ‘ATDT’ + phonenumber) «— Send the phone number.

WATT 'Press any key to disconnect the modem.’ WINDOW
= FPUTS (modemhandl, ‘ATZH’) Send the disconnect string.
= FCLOSE (modemhand]l) Close COM2.

In this example, first the COM2 port is initialized with the MS-DOS
MODE command, and the port is opened with FOPEN(). The han-
dle returned by FOPEN() is stored to the memory variable
MODEMHANDL. If the COM2 port cannot be opened, FERROR() re-
turns a non-zero value, displays an error message in a WAIT win-
dow, and then exits the program.

If the port is successfully opened, FPUTS() sends a dialing com-
mand to the port followed by the phone number. The phone num-
ber is stored in a memory variable but could also be stored in a
character database field.

D10-10 Low-Level File Input/Output

11 Text Merge

FoxPro version 2.5 provides commands and functions for merging
text. Using these commands and functions, you can combine text
with the following text merge components:

® Contents of database fields

* Contents of memory variables

® Contents of array elements

® Results of functions

® Expressions and results of calculations

For example, you can use the DATE() function to put the current
date at the top of a letter, and you can use fields from a database
to put a customer’s name, company and address below the date.

The following table lists text merge commands and functions and

Text Merge

their use.
Command or
Function Use

\ TN Outputs lines of text.

TEXT

ENDTEXT Outputs lines of text.
Enables or disables the evaluation of

SET TEXTMERGE | database fields, variables, elements,
functions and calculations.

SET Specifies delimiters that surround database

TEXTMERGE fields, variables, elements, functions and

DELIMITERS calculations.
Directs output from \ | \\ and TEXT ...

_TEXT ENDTEXT to a file opened with a low-level
function.

PRETEXT Specifies a character expression that
prefaces text merge lines.

D111

Merging Text with Text Merge Components

Merging Text with Text Merge Components

D11-2

To merge text and text merge components such as fields, variables,
and results of functions, FoxPro must first evaluate the compo-
nents. For example, if DATE() is at the top of a letter, FoxPro
first determines the value of DATE(), and then produces it as out-
put.

For FoxPro to evaluate a text merge component, three conditions
must exist:

® You must have SET TEXTMERGE ON.

® The current text merge delimiters, which you can specify with
the SET TEXTMERGE DELIMITERS command, must surround
the component.

® The component must be within a TEXT ... ENDTEXT block or
on a line beginning with \ or \\.

Enabling Text Merge with SET TEXTMERGE

When you start FoxPro, the default for TEXTMERGE is OFF. To
enable the evaluation of text merge components, use the command
SET TEXTMERGE ON.

Suppose you use field names from a database in a form letter.
When you have SET TEXTMERGE ON and the field names are sur-
rounded by text merge delimiters, the contents of the fields merge
with the text of the letter. If delimiters do not surround the field
names, the names — not their contents — merge with the text of
the letter.

If you have SET TEXTMERGE OFF, FoxPro does not evaluate text
merge components but instead outputs them literally (along with
the surrounding delimiters). In the previous example, the field
names and their delimiters merge with the text of the letter.

Specifying Text Merge Delimiters

For FoxPro to evaluate text merge components, they must be sur-
rounded by text merge delimiters. When you start FoxPro, the de-
fault delimiters are sets of double angle brackets (<< and >>).

With the SET TEXTMERGE DELIMITERS command, you can specify
the characters you want to use for text merge delimiters, or you
can restore the default delimiters. For more information about
SET TEXTMERGE DELIMITERS, refer to the FoxPro Language
Reference.

Text Merge

Merging Text with Text Merge Components

Specifying Text Merge Blocks

In addition to satisfying the previous requirements, text merge
components must be within a TEXT ... ENDTEXT block or must be
on a line beginning with \ or \\.

Using TEXT ... ENDTEXT

The following example illustrates how SET TEXTMERGE, text merge
delimiters and TEXT ... ENDTEXT operate together in a text merge.

In this example, first TEXTMERGE is SET ON, enabling the evalua-
tion of functions and fields. Then, SET TEXTMERGE DELIMITERS TO
restores the text merge delimiters to the default set of double
angle brackets (<< and >>). Finally, the CUSTOMER database is
opened, and TEXT begins the evaluation of the text merge compo-
nents.

All output goes to the screen. The value of DATE() is output, fol-
lowed by the contents of the CONTACT, COMPANY and address fields
from the CUSTOMER database. Then, the body of the letter follows
as text.

CLEAR Clear the screen.

SET TEXTMERGE ON Enable the evaluation of fields, functions, etc.
SET TEXIMERGE DELIMITERS TO <— Restore the default delimiters (<< >>).

SELECT 0

USE custarer

SCAN Traverse the database.

TEXT Start merging text and text merge components.

<<DATE()>>
<<ALLTRIM(PROPER (contact

<<ALLTRTM (PROPER (comparty

(())>>

(()
<<ALLTRIM (PROPER (address1

((

((

)

) >>
))>>

<<ALLTRTM (PROPER (address?)) >>

<<ALLTRIM (PROPER (city)) >>, <<ALLTRIM((state))>> <<ALLTRIM(zip)>>

Dear <<ALLTRIM(PROPER (contact))>>,

Thank youfor your interest in our product. The literature you
requested is on its way!

Sincerely,
Microsoft Corporation

ENDTEXT

Text Merge D11-3

Merging Text with Text Merge Components

D11-4

WATT WINDOW «—————— Pause before the next record.

CLEAR Clear the screen.
FNDSCAN Move to the next record.
USE Close the database.

The example uses a SCAN ... ENDSCAN loop to move through the
database and WAIT WINDOW to pause program execution before
moving to the next record.

Here is the output from the first record:

12/10/92

N. Baker

Datatech Inc.

480 Village St.
Suite 102

San Rolfos, CA 10514
Dear N. Baker,

Thank you for your interest in our product.
The literature you requested is on its way!

Sincerely,

Microsoft Corporation

Text Merge

Merging Text with Text Merge Components

If this example is modified so that TEXTMERGE is SET OFF or the
TEXT ... ENDTEXT command is removed, the output looks like this:

<<DATE()>>

<<ALLTRIM (PROPER (contact)) >>

<<ALLTRIM(PROPER (camparny)) >>

<<ALLTRIM (PROPER (addressl)) >>

<<ALLTRIM (PROPER (address2)) >>

<<ALLTRIM(PROPER (city)) >>, <<ALLTRIM(state))>> <<ALLTRIM(zip)>>

Dear <<ALLTRIM(PROPER(contact))>>,

Thank you for your interest in cur product.
The literature you requested is on its way!

Sincerely,

Microsoft Corporation

Using \ | \\

Text Merge

In the previous example, TEXT ... ENDTEXT specifies where the text
merge starts and ends. Instead of using TEXT ... ENDTEXT, you
can use single (\) or double backslashes (\\)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>